京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的七个挑战
大数据挑战和机遇并存,大数据在未来几年的发展将从前几年的预期膨胀阶段、炒作阶段转入理性发展阶段、落地应用阶段,大数据在未来几年将逐渐步入理性发展期。未来的大数据发展依然存在诸多挑战,但前景依然非常乐观。
目前大数据的发展依然存在诸多挑战,包括七大方面的挑战:业务部门没有清晰的大数据需求导致数据资产逐渐流失;企业内部数据孤岛严重,导致数据价值不能充分挖掘;数据可用性低,数据质量差,导致数据无法利用;数据相关管理技术和架构落后,导致不具备大数据处理能力;数据安全能力和防范意识差,导致数据泄露;大数据人才缺乏导致大数据工作难以开展;大数据越开放越有价值,但缺乏大数据相关的政策法规,导致数据开放和隐私之间难以平衡,也难以更好的开放。
挑战一:业务部门没有清晰的大数据需求
很多企业业务部门不了解大数据,也不了解大数据的应用场景和价值,因此难以提出大数据的准确需求。由于业务部门需求不清晰,大数据部门又是非盈利部门,企业决策层担心投入比较多的成本,导致了很多企业在搭建大数据部门时犹豫不决,或者很多企业都处于观望尝试的态度,从根本上影响了企业在大数据方向的发展,也阻碍了企业积累和挖掘自身的数据资产,甚至由于数据没有应用场景,删除很多有价值历史数据,导致企业数据资产流失。因此,这方面需要大数据从业者和专家一起,推动和分享大数据应用场景,让更多的业务人员了解大数据的价值。
挑战二:企业内部数据孤岛严重
企业启动大数据最重要的挑战是数据的碎片化。在很多企业中尤其是大型的企业,数据常常散落在不同部门,而且这些数据存在不同的数据仓库中,不同部门的数据技术也有可能不一样,这导致企业内部自己的数据都没法打通。如果不打通这些数据,大数据的价值则非常难挖掘。大数据需要不同数据的关联和整合才能更好的发挥理解客户和理解业务的优势。如何将不同部门的数据打通,并且实现技术和工具共享,才能更好的发挥企业大数据的价值。
挑战三:数据可用性低,数据质量差
很多中型以及大型企业,每时每刻也都在产生大量的数据,但很多企业在大数据的预处理阶段很不重视,导致数据处理很不规范。大数据预处理阶段需要抽取数据把数据转化为方便处理的数据类型,对数据进行清洗和去噪,以提取有效的数据等操作。甚至很多企业在数据的上报就出现很多不规范不合理的情况。以上种种原因,导致企业的数据的可用性差,数据质量差,数据不准确。而大数据的意义不仅仅是要收集规模庞大的数据信息,还有对收集到的数据进行很好的预处理处理,才有可能让数据分析和数据挖掘人员从可用性高的大数据中提取有价值的信息。Sybase的数据表明,高质量的数据的数据应用可以显著提升企业的商业表现,数据可用性提高10%,企业的业绩至少提升在10%以上。
挑战四:数据相关管理技术和架构
技术架构的挑战包含以下几方面:
(1)传统的数据库部署不能处理TB级别的数据,快速增长的数据量超越了传统数据库的管理能力。如何构建分布式的数据仓库,并可以方便扩展大量的服务器成为很多传统企业的挑战;
(2)很多企业采用传统的数据库技术,在设计的开始就没有考虑数据类别的多样性,尤其是对结构化数据、半结构化和非结构化数据的兼容;
(3)传统企业的数据库,对数据处理时间要求不高,这些数据的统计结果往往滞后一天或两天才能统计出来。但大数据需要实时处理数据,进行分钟级甚至是秒级计算。传统的数据库架构师缺乏实时数据处理的能力;
(4)海量的数据需要很好的网络架构,需要强大的数据中心来支撑,数据中心的运维工作也将成为挑战。如何在保证数据稳定、支持高并发的同时,减少服务器的低负载情况,成为海量数据中心运维的一个重点工作。
挑战五:数据安全
网络化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局。如何保证用户的信息安全成为大数据时代非常重要的课题。在线数据越来越多,黑客犯罪的动机比以往都来的强烈,一些知名网站密码泄露、系统漏洞导致用户资料被盗等个人敏感信息泄露事件已经警醒我们,要加强大数据网络安全的建设。另外,大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制也提出更高的要求。目前很多传统企业的数据安全令人担忧。
挑战六:大数据人才缺乏
大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支掌握大数据技术、懂管理、有大数据应用经验的大数据建设专业队伍。目前大数据相关人才的欠缺将阻碍大数据市场发展。据Gartner预测,到2015年,全球将新增440万个与大数据相关的工作岗位,且会有25%的组织设立首席数据官职位。大数据的相关职位需要的是复合型人才,能够对数学、统计学、数据分析、机器学习和自然语言处理等多方面知识综合掌控。未来,大数据将会出现约100万的人才缺口,在各个行业大数据中高端人才都会成为最炙手可热的人才,涵盖了大数据的数据开发工程师、大数据分析师、数据架构师、大数据后台开发工程师、算法工程师等多个方向。因此需要高校和企业共同努力去培养和挖掘。目前最大的问题是很多高校缺乏大数据,所以拥有大数据的企业应该与学校联合培养人才。
挑战七:数据开放与隐私的权衡
在大数据应用日益重要的今天,数据资源的开放共享已经成为在数据大战中保持优势的关键。商业数据和个人数据的共享应用,不仅能促进相关产业的发展,也能给我们的生活带来巨大的便利。由于政府、企业和行业信息化系统建设往往缺少统一规划,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,这给数据利用造成极大障碍。另外一个制约我国数据资源开放和共享的一个重要因素是政策法规不完善,大数据挖掘缺乏相应的立法。无法既保证共享又防止滥用。因此,建立一个良性发展的数据共享生态系统,是我国大数据发展需要迈过去的一道砍。同时,开放与隐私如何平衡,也是大数据开放过程中面临的最大难题。如何在推动数据全面开放、应用和共享的同时有效地保护公民、企业隐私,逐步加强隐私立法,将是大数据时代的一个重大挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17