
R语言与数据的预处理
在面对大规模数据时,对数据预处理,获取基本信息是十分必要的。今天分享的就是数据预处理的一些东西。
一、获取重要数据
在导入大规模数据时,我们通常需要知道数据中的关键内容:最值,均值,离差,分位数,原点矩,离差,方差等。在R中常用的函数与作用整理如下:
统计函数
作用
Max
返回数据的最大值
Min
返回数据的最小值
Which.max
返回最大值的下标
Which.min
返回最小值的下标
Mean
求均值
Median
求中位数
mad
求离差
Var
求方差(总体方差)
Sd
求标准差
Range
返回【最小值,最大值】
Quantile
求分位数
Summary
返回五数概括与均值
Finenum
五数概括(最值,上下四分位数,中位数)
Sort
排序(默认升序,decreasing=T时为降序)
Order
排序(默认升序,decreasing=T时为降序)
Sum
求和
length
求数据个数
emm
Actuar包中求k阶原点矩
skewness
Fbasic包中求偏度
kurtosis
Fbasics包中求峰度
注:对象为分组数据,矩阵时返回的不是整体的方差,均值,而是每一列(组)的方差均值其余变量类似。
二、直方图与频数统计
对于数据分布的认识,在大规模时有必要使用直方图。在R语言中,直方图的函数调用为:
hist(x, breaks = "Sturges",
freq = NULL, probability = !freq,
include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main= paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,
xlab = xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, warn.unused = TRUE, ...)
这里值得一提的是,分组参数breaks默认使用史特吉斯(Sturges)公式,根据测定数n 来计算组距数k,公式为:k=1+3.32 logn。当然也可以自己设定一个数组来决定分组。(举例参见《R语言绘图学习笔记》)
说完频率分布直方图,我们还有频率分布直方表。对于数据的统计,函数table可以统计出数据中完全相同的数据个数。例如对《全宋词》中暴力拆解(两个相邻字算一词)词语使用数目的统计程序如下:
[plain] view plaincopyprint?cut(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE, dig.lab = 3, ordered_result = FALSE, ...)
举一个具体例子,某一款保险产品,假设保单到达的速率为10张/天,理赔发生的速率为 1次/天。假设每张保单价格c=120,理赔额服从参数为v=1/1000 (以c*lambda1=1.2*lambda2/v设定)的指数分布。设定初始u=3000时,计算到第1000天为止发生破产的概率。(案例摘自《复 合泊松过程模型的推广和在R语言环境下的随机模拟》 )
破产过程的R代码如下:对于数据的分布估计经验分布是一个非常好的估计。在actuar包中函数ogive给出的实现:
ogive(x, y = NULL, …)
## S3 method for class ‘ogive’
print(x, digits = getOption(“digits”) – 2, …)
## S3 method for class ‘ogive’
summary(object, …)
## S3 method for class ‘ogive’
knots(Fn, …)
## S3 method for class ‘ogive’
plot(x, main = NULL, xlab = “x”, ylab = “F(x)”, …)
还是以上面的例子数据zz为例:
ogive(zz)
plot(ogive(zz))
输出结果:
Ogive forgrouped data
Call:ogive(zz)
x = -Inf, -3, -2, …, 3, Inf
F(x) = 0, 0.0011, 0.0229, …,0.9985, 1
由于大数定律的存在,很多情况下,正态性检验是十分有必要的一个分布检验,在R中提供的正态性检验可以汇总为下面的一个正态检验函数:
对于分布的检验还有卡方检验,柯尔莫哥洛夫检验等,在R中也有实现函数chisq.test()等。我们同样以一个例子来说明:
解答如下:(结果以注释形式标明)
[plain] view plaincopyprint?数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08