京公网安备 11010802034615号
经营许可证编号:京B2-20210330
窥尽大数据背后被遮掩起来的财富
当我们在谈大数据的时候,我们在谈论什么?大数据产业火爆的背后,有着深厚的利益驱动性,于是各大商家与企业纷纷趋之若鹜,想要窥尽大数据背后被遮掩起来的财富。毫无疑问,变现,是大数据火爆的背后原因。
大数据被潮流所接受,皆因它能够带来进步与利益
纵观古今,博览中西,能够经历历史的洗刷而留存下来的精粹,都是能经得住各种考验的东西,都是能够真实满足人类各种需求的东西。这些“东西”,要么是从物质上说能给人类带来利益的——如农业、手工业、商贸等;要么是从情感上说能够给人类带来快感的——如绘画、舞蹈、歌曲等。这些东西在几千年的文明史中,除了样式上会有与时俱进的变化,但究其核心,若整体一个产业种类或艺术种类自被催生日起便被存续下来,那一定是满足了人类的需求。那么,大数据是否能够被当前的历史潮流接受,那就是要看它是否能够给我们带来切切实实的利益。
有不少人说,工业革命又将迎来一次变革了,更道大数据产业是第四次工业革命的标志,这个说法虽有待商榷,但是,只要它给人类社会带来生产力进步,以一种更智能新颖的模式代替人类重劳力,促进全社会信息共享和交流,让社会以更高进程地进步,那也未尝不可。
科学技术是第一生产力,踏入工业4.0时代,必有新的主导科学技术——大数据、BI、云计算、物联网、移动互联等新一代信息技术打破了原有的技术壁垒,形成了新型的产业和商业创新模式,促进和刺激了新一轮的生产力发展。
低廉快速,让大数据能成为盈利的工具
说到大数据,我们可以具体、广义地理解成Hadoop、各种数据挖掘、机器学习算法、人工智能。因此,今年也催生出学习以上技能的一股风潮。那么,努力学习是否真有丰厚的回报?答案是肯定的,因为,大数据能成为盈利的工具。
日常操作中,为了缩短计算和统计的时间,为运营与决策提供数据成本更为低廉和具有时效性的方案,我们会采用Hadoop或者Spark这些框架进行分布式计算;为了深埋于数据背后的数据量化后的规律与彼此的逻辑关系,我们使用机器学习算法对数据进行深度的挖掘和处理。
在运营学当中,“消除不确定性来降低试错成本”是一句经过万千实践留下的“金句”。而围绕这一中心思想发展起来的工程技术改进、算法改进、架构优化等,都是大数据变现的核心内容。而商家和企业十分看重的大数据分析,深究其本质,其实和获取信息的本质是一致的——通过消除不确定性来降低试错成本。
做大数据是为了降低成本,增加行业收益
很多人认为,大数据变现只是纸上谈兵,然而,在我们认识到本质之后就不会让人觉得变现这件事很困惑或很艰难。虽然大数据带来的利益并不是我们可以唾手可得的,但是,在比较明确的思路和目标下,在国家的相关政策,以及世界科技的潮流催生下,这也渐渐变成了一种趋势。
很多人误会,做大数据是为大而大,其实,做大数据是为了降低成本而大,这个成本是广义的。在项目启动初期,商家与企业看似花费了很多的金钱在设备购买、工具分析、人才挖掘上,但是未来这些设备上所承载的数据以及从中得到的信息,会大幅削减试错成本,而且在某些行业领域里这种增益的效果还会非常明显。以小见大,事半功倍的事情,何乐而不为?
变现,是大数据火爆背后的根本原因。共享经济时代,越来越多人选择大数据相关行业,例如众包平台、数据分析行业,等等。你的选择又是什么呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29