京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析谨慎对待
目前,在大数据时代下,无论是在社会用人单位或者是个体方面都会涉及与处理相关数据信息的问题,社会大众在应用数据信息之际也被社会诸多的数据信息所围绕,即使现代社会数据信息的发展情况较为良好、也让社会大众更为信服,然而在社会大众对大数据的印象观念中,数据形式的发展已经超过了他们所预想的、数据总量已经超过社会大众所理解的范畴,应当如何正确、有效地处理该部分数据信息已经变为现代社会大众共同面对的问题,需求人们谨慎地对待。
实施数据分析的方法
正确地对数据进行分析过程已经作为大数据时代对待信息量极大的数据处理的关键性环节。即使大数据的优势较为突显,但仍然在处理阶段存有务必解决的3大问题:大容量数据、分析速率以及多格式的数据,这三大问题使得现代标准化的储存技术难以对大数据执行相关的储存过程,进而需求人们积极地引入较为科学、有效的分析系统,进而对大数据实施分析过程。
Hadoop HDFS主要是采用流失数据询问形式进而实现容量较大文件的储存,主要是运用在商业化硬件群体中,而所谓的商业化硬件群体,即是区别于低端硬件,且相对于低端硬件群体而言其产生问题的机率是大大地降低的。Hadoop可以不用在价格较高且可信度高的硬件上运用,即便是面对产生问题机率较高的群体,HDFS在面对问题之际仍然会采取继续运用的手法而且与此同时不会让用户发现较为突兀的间断问题,这样的理念从本质上大大地减少了针对机器设备的维修维护费用,特别是对于同时监管成千上万部机器设备的用户。
2.Hadoop的优点与不足
Hadoop是一项可以针对诸多数据实行分布型模式解决的软件架构,与此同时其处理过程主要是依据一条可信、有效、可伸缩的途径进行的,这点也是 Hadoop所独有的优点。然而众所周知,每样事件都不能做到完全的完美,Hadoop与其它新兴的科学技术相同,一定的不足在实际应用过程中变得日益明显:第一,现阶段的Hadoop针对企业内外部信息的维护、保护效用较为匮乏,项目的设计工作人员务必选择自行手动的方式进行数据的设置,并且这一过程较大程度上依赖设计工作人员确定相关数据信息的准确性,形成时间浪费的局面;第二,Hadoop需求社会具备投资构建专用的计算集群,可是这一般会容易形成单个储存、计算数据信息和储存或者CPU应用的难题,并且这样的储存形式在其它项目上仍然会存有兼容性的难题。
现阶段的大数据时代常用于数据挖掘项目的方法较多,比如分类法、回归分析法、关系规则法、Web数据挖掘法等,本文主要是针对分类法、回归分析法、Web数据挖掘法对数据挖掘过程进行分析
1.分类法。分类法主要寻找规模较大的数据库当中其中一组数据的相同特质且依据划分形式把数据划分为不一样的种类,对其实施分类的主要目的是利用划分形式,把数据库当中的数据项目投放至特定的、规定的类型中。比如现今淘宝商店主要是依据用户最近的购买状况对用户实行相关的划分工作,再者能够更为有效地对用户实行推荐,进而逐渐提高淘宝店铺的销售量。
2.回归分析法。回归分析法主要是展现数据库当中数据信息的独有特质,利用函数来展现相关数据间的不同联系进而察觉相关数据信息特质的依赖程度。回归分析法能够被运用至各项针对数据序列的预计与测量以及存有联系的数据探究中,而在市场营销方面,回归分析法能够在每一层面上有所体现,比如企业能够对本季度销售量执行相关的回归分析法,继而便于对下季销售量进行较为接近的预测并且对相关的问题采取不一样的解决方案。
3.Web数据挖掘法。Web数据挖掘法主要是针对网络式数据的综合性科技,目前在全球范围内较为常用的Web数据挖掘算法主要有PageRank算法、 HITS算法和LOGSOM算法,以上的三种算法所涉及的用户主要是指较为笼统的用户,没有较为鲜明的界限对用户进行详细、谨慎地划分。然而当前Web数据挖掘法也正迎来了一些挑战,比如用户分类层面、网站公布内容的有效层面、用户停留页面时间长短的层面等。在大力推广与宣传Web技术的大数据时代,以上所提及的挑战也应当引起社会大众的关注,并且务必要谨慎地对待。
总之,即便现今我国正步入大数据时代,可是现阶段我国数据的相关技术仍然停留在初创的时期,更深一层地改进与发展有关数据分析技术仍然是目前社会针对数据专题的热门话题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15