京公网安备 11010802034615号
经营许可证编号:京B2-20210330
实施数据挖掘项目考虑的问题
问题一
谈到数据挖掘应从以下三方面加以考虑,一是用数据挖掘解决什么样的商业问题,二是为进行数据挖掘所做的数据准备,三是数据挖掘的各种分析算法。
数据挖掘的分析算法主要来自于以下两个方面:统计分析和人工智能(机器学习、模式识别等)。数据挖掘研究人员和数据挖掘软件供应商,在这一方面所做的主要工作是优化现有的一些算法,以适应大数据量。另外需要强调的是,任何一种数据挖掘的算法,不管是统计分析方法、神经元网络、各种树分析方法,还是遗传算法,没有一种算法是万能的。不同的商业问题,需要用不同的方法去解决。即使对于同一个商业问题,可能有多种算法,这个时候,也需要评估对于这一特定问题和特定数据哪一种算法表现好。
做数据挖掘研究的人,往往把主要的精力用于改进现有算法和研究新算法上。人们都知道数据准备是必不可少的一步,但很少有人去真正花时间和精力去研究。其实数据挖掘最后成功与失败,是否有经济效益,数据准备起到了至关重要的作用。数据准备包含很多方面:一是从多种数据源去综合数据挖掘所需要的数据,保证数据的综合性、易用性、数据的质量和数据的时效性,这有可能要用到数据仓库的思想和技术;另一方面就是如何从现有数据中衍生出所需要的指标,这主要取决于数据挖掘者的分析经验和工具的方便性。
众所周知,SQL是广泛用于数据库查询的语言,有很多数据挖掘软件提供商利用SQL来为数据挖掘做数据准备,但就笔者多年来的分析经验和同其他专家探讨感觉到,SQL在很多时候有些力不从心,因为数据挖掘和分析的一些算法通常要求数据具有一定的格式和规范性。
还需要强调的一点是,人们通常把数据挖掘工具看得过份神秘,认为只要有了一个数据挖掘工具,就能自动挖掘出所需要的信息,就能更好地进行企业运作,这是认识上的一个误区。其实要想真正做好数据挖掘,数据挖掘工具只是其中的一个方面,同时还需要对企业业务的深入了解和数据分析经验。一个企业要想在未来的市场中具有竞争力,必须有一些数据挖掘方面的专家,专门从事数据分析和数据挖掘工作。再同其他部门协调,把挖掘出来的信息供管理者决策参考,最后把挖掘出的知识物化。在国内的企业中,还很少有决策人员认识到这一点。如果管理者没有这方面的意识,数据挖掘和数据分析就很难发挥应有的作用,很容易走向两个极端,一是认为数据挖掘没有用处,二是开始认为数据挖掘是万能的。如此得到的结果往往与初始期望相去太远。
- 问题二
1.超大规模数据库和高维数据问题;
2.数据丢失问题;
3.变化的数据和知识问题;
4.模式的易懂性问题;
5.非标准格式的数据、多媒体数据、面向对象数据处理问题;
6.与其他系统的集成问题;
7.网络与分布式环境下的KDD问题。
8.个人隐私问题
当然数据挖掘也会带来一些社会问题,其中最敏感的要属个人隐私问题。当消费者感觉到他们的个人信息被非授权使用、滥用甚至出卖时,他们会感到他们的个人隐私受到了严重侵害。例如,在西方有的警察为了防止来自罪犯的报复,往往要注意保守自己家庭地址和电话号码不被泄露,但当他的新生婴儿在医院出生后,医院可能会将相应的信息出卖给专营新生儿用品或服务的公司,使他全然失去安全感。也许当你用信用卡为你妻子的妇科诊疗付费后,你会回家后收到来自保险公司的妇科保险征订单、来自厂商的妇科保健用品广告等,你会如何感受?正是由于这种状况,在有些发达国家,许多人认为政府和商业机构对他们个人的事知道得太多了,为此,他们宁可放弃使用信用卡消费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27