
实施数据挖掘项目考虑的问题
问题一
谈到数据挖掘应从以下三方面加以考虑,一是用数据挖掘解决什么样的商业问题,二是为进行数据挖掘所做的数据准备,三是数据挖掘的各种分析算法。
数据挖掘的分析算法主要来自于以下两个方面:统计分析和人工智能(机器学习、模式识别等)。数据挖掘研究人员和数据挖掘软件供应商,在这一方面所做的主要工作是优化现有的一些算法,以适应大数据量。另外需要强调的是,任何一种数据挖掘的算法,不管是统计分析方法、神经元网络、各种树分析方法,还是遗传算法,没有一种算法是万能的。不同的商业问题,需要用不同的方法去解决。即使对于同一个商业问题,可能有多种算法,这个时候,也需要评估对于这一特定问题和特定数据哪一种算法表现好。
做数据挖掘研究的人,往往把主要的精力用于改进现有算法和研究新算法上。人们都知道数据准备是必不可少的一步,但很少有人去真正花时间和精力去研究。其实数据挖掘最后成功与失败,是否有经济效益,数据准备起到了至关重要的作用。数据准备包含很多方面:一是从多种数据源去综合数据挖掘所需要的数据,保证数据的综合性、易用性、数据的质量和数据的时效性,这有可能要用到数据仓库的思想和技术;另一方面就是如何从现有数据中衍生出所需要的指标,这主要取决于数据挖掘者的分析经验和工具的方便性。
众所周知,SQL是广泛用于数据库查询的语言,有很多数据挖掘软件提供商利用SQL来为数据挖掘做数据准备,但就笔者多年来的分析经验和同其他专家探讨感觉到,SQL在很多时候有些力不从心,因为数据挖掘和分析的一些算法通常要求数据具有一定的格式和规范性。
还需要强调的一点是,人们通常把数据挖掘工具看得过份神秘,认为只要有了一个数据挖掘工具,就能自动挖掘出所需要的信息,就能更好地进行企业运作,这是认识上的一个误区。其实要想真正做好数据挖掘,数据挖掘工具只是其中的一个方面,同时还需要对企业业务的深入了解和数据分析经验。一个企业要想在未来的市场中具有竞争力,必须有一些数据挖掘方面的专家,专门从事数据分析和数据挖掘工作。再同其他部门协调,把挖掘出来的信息供管理者决策参考,最后把挖掘出的知识物化。在国内的企业中,还很少有决策人员认识到这一点。如果管理者没有这方面的意识,数据挖掘和数据分析就很难发挥应有的作用,很容易走向两个极端,一是认为数据挖掘没有用处,二是开始认为数据挖掘是万能的。如此得到的结果往往与初始期望相去太远。
- 问题二
1.超大规模数据库和高维数据问题;
2.数据丢失问题;
3.变化的数据和知识问题;
4.模式的易懂性问题;
5.非标准格式的数据、多媒体数据、面向对象数据处理问题;
6.与其他系统的集成问题;
7.网络与分布式环境下的KDD问题。
8.个人隐私问题
当然数据挖掘也会带来一些社会问题,其中最敏感的要属个人隐私问题。当消费者感觉到他们的个人信息被非授权使用、滥用甚至出卖时,他们会感到他们的个人隐私受到了严重侵害。例如,在西方有的警察为了防止来自罪犯的报复,往往要注意保守自己家庭地址和电话号码不被泄露,但当他的新生婴儿在医院出生后,医院可能会将相应的信息出卖给专营新生儿用品或服务的公司,使他全然失去安全感。也许当你用信用卡为你妻子的妇科诊疗付费后,你会回家后收到来自保险公司的妇科保险征订单、来自厂商的妇科保健用品广告等,你会如何感受?正是由于这种状况,在有些发达国家,许多人认为政府和商业机构对他们个人的事知道得太多了,为此,他们宁可放弃使用信用卡消费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29