京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS常见问题解答
在SPSS中能否直接读入EXCEL 97数据文件?有无读入数据的简便方法?
在 SPSS 10.0版中,任何版本的EXCEL文件都可以在OPEN对话框中直接打开。但在9.0及以前版本中就比较复杂,实际上SPSS 7.0以上的版本都可以读入EXCEL 97和ACCESS 97的数据文件。但这些文件类型不能在打开文件对话框的文件类型中找到,SPSS是利用ODBC来实现对这些数据文件的读取的。例如在SPSS 9.0中,请选择File菜单->database capture->new query,会弹出数据库读取向导的对话框,按提示操作即可(你所能够读取的ODBC数据类型取决于你所用计算机上安装的ODBC驱动程序的多少)。
实际上对于老版本的SPSS来说,读入 EXCEL 97数据文件最简单的方法是先在EXCEL 97中选择并复制所需数据(不要选择变量名),然后在SPSS数据界面中选择一行一列的单元格,将数据粘贴过来,最后将变量名改为原变量名。当变量少而记录数多时,这种方法是最快的。
如何将SPSS的结果文件(*.spo文件)转换为其它格式?
SPSS的结果文件从7.0版本起就是专用的*.spo文件,据我所知,还没有那种文字处理软件可以将他读出来,但SPSS提供了将该文件转存为其它格式的功能。在SPSS的OUTPUT窗口中选择File菜单->export,可以将结果文件另存为HTML文件和TXT文件。当然,要比spo文件难看的多。图表则自动转化为JPG图片,不能再编辑。因此,最好在所有修改都完成后再EXPORT。另外,该命令也可以针对单个图片或表格进行,选中所需图片或表格,单击右键,选择快捷菜单中的EXPORT即可。
想将SPSS的结果表格直接粘贴到WORD中使用,但一粘过去表格的格式就乱了,如何保持原有的格式?
选中所需表格,单击右键,选择快捷菜单中的copy object即可,此时粘贴过去的表格就会保持原有的格式(实际上粘贴过去的是一幅图片)。
在多数统计软件中,四格表(和行*列表)的数据格式均为行变量、列变量和频数变量。如下面这个四格表的数据及相应格式如下:
分析时首先选择菜单Data->Weight Cases,将频数变量选入Frequency格中,按OK确认。此时系统就会以频数表的形式来读取所输入的数据,既记录数应为34+12+23+26=95例,而不是4例。然后选择菜单Analyze->Descriptive Statistics->Cross Tables,将行、列变量分别选入相应的Row、Column格中,再按下方的Statistics钮,选中左上角的Chi-square复选框,按Continue钮,最后按OK即可
在打开已有的Excel表格时可以成功地读入数据,但同时出现Output1-SPSS Viewer窗 :
>Warning. Command name: GET DATA
>(2109) Encountered a value incompatible with Spss Percent type. Possible
>loss of data. Ensure that all data within the column contains Percent type
>values.
>Note: Future warnings of this type will not be reported because they may be
>too numerous.
>* (Row# 12, Column# 5)
这是什么原因?
该提示的意思是EXCEL表格的的12行第五列的数据和SPSS的格式不兼容,从而该数值可能无法正确导入,可能的原因是小数点后的位数太多。这需要谈到一点编程的问题,EXCEL和ACCESS等的默认数据长度都是24位的,无论你的实际数值为多大。精度高是好事,但这个精度也太高了,会导致小数点后面跟了一大堆的0,从而超出SPSS所能够承受的精度范围,导致出现警告。这时你需要检查一下你的数据,比如说太长、或者数字中间打入了一个逗号等,许多时候将该列的默认数据格式改一下就可以了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27