京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么数据分析达不到你的要求
很多在大数据、数据分析和雇佣金融工程师上投资了数百万的组织显得有些沮丧。它们无疑掌握了大量的、甚至质量不错的数据。他们的分析师和数据分析能力也都是一流的。但是,除了对更好的数据及其分析的讨论,组织管理者们似乎进行着相同的商业讨论和辩论。组织们大概会作出更多由大数据驱动的决定,但是它们的组织文化看起来仍然和过去没什么不同。某个首席信息官最近告诉我:“我们正在做着我五年前根本无法想象的实时数据分析,但是在无论哪个地方,这些实时数据所产生的影响都还没能接近我的想象。”
大数据给企业们带来了什么呢?在《财富》1000强企业们开了几个关于大数据和数据分析的会议,又和那些满意于得到了分析投资的回报的组织们相处了很长时间以后,一个概念清晰的“数据启发法”面世了。普通的企业们开始用大数据分析商业成果,以此来作出商业决策;企业们还利用可观的分析回报去影响和支持行为的改变。更优质的数据驱动分析并不仅仅是在现有的处理和检验过程中安装一个插件程序,而应该被用来形成和支持不同性质的对话和互动。
“在管理层确定要改变或影响的行为之前,我们不会做那些跟数据分析和商业智能有关的事情。”一个金融服务企业的首席信息官说道。“做出更好的承诺和改进财务报表非常容易,但这意味着,我们只不过是把数据分析用在我们已经做得很好的事情上。”
真正的挑战,在于意识到用大数据或数据分析来更好地解决问题和(或)作出决策,掩盖了“新的数据分析通常对新的行为提出了要求”的组织现实。人们可能需要进行更多的分享和合作;公司或许需要形成与过去不同或具有补充性质的业务流程;公司的管理者和经营者们也许需要确保现有的激励机制没有低估数据分析能够带来的增长和效率提高的机会。
举个例子,在一个药材供应企业里,如果要围绕“最有利可图的顾客”和“最挣钱的商品”进行数据分析的话,需要对销货清单和技术支持团队进行完整的再教育,让他们学会如何让顾客对高增值产品心烦意乱,或者让顾客学会了解这些商品。这个企业意识到,数据分析不应该只是简单地运用于支持现有的销售和服务,还应该把它当成一个机会,加速形成新型的便利咨询式销售,为组织提供支持。
具有讽刺意味的是,比起大数据和数据分析用在哪里,目的为何,它们的质量却没有那么重要。最饶有趣味的张力和讨论从始至终都围绕着“组织能否通过数据分析得到最大回报,优化现有的流程表现,让人们的表现有所不同”来进行。但是,人们的一个初步共识是,大部分的建设性对话都集中在数据分析能如何改变人们的行为上,而非如何解决问题上。
“我们公司中大部分人的历史课成绩要比数学课成绩好,”一个消费品分析主管人员对我说道:“让人们理解新的信息和其度量会如何改变他们的做事方式,比让他们理解底层算法要容易……我们得到经验教训是,我们无法让内部客户通过“吃透”数据和分析来了解我们的工作价值。”
得到正确的答案,或着提出正确的问题,都已经不再是高分析回报企业们的主要考虑因素。问题与答案,数据与分析,毫无疑问都是重要的。然而,那些问题和答案及其分析如何与个人行为和制度行为结合起来,或者如何冲突,才是更重要的。甚至有时候,最好的分析也会产生不良的行为后果。别做无用的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01