
为什么数据分析达不到你的要求
很多在大数据、数据分析和雇佣金融工程师上投资了数百万的组织显得有些沮丧。它们无疑掌握了大量的、甚至质量不错的数据。他们的分析师和数据分析能力也都是一流的。但是,除了对更好的数据及其分析的讨论,组织管理者们似乎进行着相同的商业讨论和辩论。组织们大概会作出更多由大数据驱动的决定,但是它们的组织文化看起来仍然和过去没什么不同。某个首席信息官最近告诉我:“我们正在做着我五年前根本无法想象的实时数据分析,但是在无论哪个地方,这些实时数据所产生的影响都还没能接近我的想象。”
大数据给企业们带来了什么呢?在《财富》1000强企业们开了几个关于大数据和数据分析的会议,又和那些满意于得到了分析投资的回报的组织们相处了很长时间以后,一个概念清晰的“数据启发法”面世了。普通的企业们开始用大数据分析商业成果,以此来作出商业决策;企业们还利用可观的分析回报去影响和支持行为的改变。更优质的数据驱动分析并不仅仅是在现有的处理和检验过程中安装一个插件程序,而应该被用来形成和支持不同性质的对话和互动。
“在管理层确定要改变或影响的行为之前,我们不会做那些跟数据分析和商业智能有关的事情。”一个金融服务企业的首席信息官说道。“做出更好的承诺和改进财务报表非常容易,但这意味着,我们只不过是把数据分析用在我们已经做得很好的事情上。”
真正的挑战,在于意识到用大数据或数据分析来更好地解决问题和(或)作出决策,掩盖了“新的数据分析通常对新的行为提出了要求”的组织现实。人们可能需要进行更多的分享和合作;公司或许需要形成与过去不同或具有补充性质的业务流程;公司的管理者和经营者们也许需要确保现有的激励机制没有低估数据分析能够带来的增长和效率提高的机会。
举个例子,在一个药材供应企业里,如果要围绕“最有利可图的顾客”和“最挣钱的商品”进行数据分析的话,需要对销货清单和技术支持团队进行完整的再教育,让他们学会如何让顾客对高增值产品心烦意乱,或者让顾客学会了解这些商品。这个企业意识到,数据分析不应该只是简单地运用于支持现有的销售和服务,还应该把它当成一个机会,加速形成新型的便利咨询式销售,为组织提供支持。
具有讽刺意味的是,比起大数据和数据分析用在哪里,目的为何,它们的质量却没有那么重要。最饶有趣味的张力和讨论从始至终都围绕着“组织能否通过数据分析得到最大回报,优化现有的流程表现,让人们的表现有所不同”来进行。但是,人们的一个初步共识是,大部分的建设性对话都集中在数据分析能如何改变人们的行为上,而非如何解决问题上。
“我们公司中大部分人的历史课成绩要比数学课成绩好,”一个消费品分析主管人员对我说道:“让人们理解新的信息和其度量会如何改变他们的做事方式,比让他们理解底层算法要容易……我们得到经验教训是,我们无法让内部客户通过“吃透”数据和分析来了解我们的工作价值。”
得到正确的答案,或着提出正确的问题,都已经不再是高分析回报企业们的主要考虑因素。问题与答案,数据与分析,毫无疑问都是重要的。然而,那些问题和答案及其分析如何与个人行为和制度行为结合起来,或者如何冲突,才是更重要的。甚至有时候,最好的分析也会产生不良的行为后果。别做无用的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04