
别总怪大数据,你的根本问题出在这儿
前段时间有学员和我吐槽道:感觉现在“大数据”已经被戴上了魔咒,和别的企业家交流的时候,不提大数据都不好意思开口说话。我曾在移动全网营销课程上强调过:企业应该要学会运用大数据的思想,但必须从小数据开始。
在大数据的风头下,很多企业还没开始分析自己公司里的小数据,就火急火燎地研究大数据,结果事倍功半,甚至开始怀疑大数据。
为什么从小数据开始研究呢?什么是小数据呢?
小数据,就是企业个体化的数据。它并不是指数据量小,而是根据企业内在经营的特点,梳理出来的一整套数据。
企业的员工数据、官网数据、电商数据、广告数据、产品数据以及客户关系管理数据(CRM)等都属于小数据。如果能针对性地找出帮助企业做决策的数据,那样决策将更加科学和严谨。
大数据中透露着行业发展规律,而小数据则侧重于深度挖掘,可以用来提升效率和增加营销的机会。
其实企业的业务和管理,主要还是依赖以内部数据为主的“小数据”,也就是企业的自有数据。
小数据最能反映企业经营状况,而且小数据的收集和公司核心运营项目的关联性很强,含金量也更高,还能透过它真正了解经营的状况和消费者的需求。
今天我想重点和大家说一下客户关系管理数据的分析和应用,我觉得可以从三个层面进行分析。
首先,是对现有客户数据的全面分析。
大家都明白,开发新客户的成本越来越高,所以企业应该对客户数据进行全面分析,来解决老客户留存问题。也就是当获得新客户成本越来越高的时候,怎么样留住老客户是每个企业需要考虑的问题。
简单来说,就是要求企业借助数据懂客户,知道客户的背景,他们想要什么。
比如号称全球华人内容手艺人社区的“开稿”,当创始人老谭(谭瑞岗)看到猪八戒有上百万的数据,但是生产出来的却是类似500的网站、50的logo这样的产品,他觉得应该借助小数据来做一件更漂亮的事情。
他知道企业需要什么样的设计,也清楚内容生产者怎样才能和企业的需求匹配起来,而且现在很多企业都在强烈追求优质的、个性化的内容,也愿意为更好的内容掏腰包,所以他一开始就宣称要提供有品质的高端服务。
他没有和猪八戒去比谁拥有更多的数据,而是看谁对数据的挖据更深刻,他对数字进行了严格的把控。
7月份的时候开稿已经有570个邀请入驻的内容手艺人,在他的规划中,这个数字到一定程度时还会进行更严格的控制。
他设想,未来会有更多精彩的内容被创造出来,对“小数据”的深挖也能保证“开稿”客户的服务体验和效率都更胜一筹。
其次,是对数据变量的全面把握,主要用来预测忠诚客户和客户流失的原因。
客户的忠诚度必须建立在客户满意度之上,企业的产品或服务如果能一直让客户满意,客户自然忠诚。
但一旦哪些方面服务的不好,比如客户对产品后续服务或某一体验不满意,反馈的问题没人解决,那客户流失就再正常不过了。
客户数据不仅有静态的,也有动态的。比如客户购买服务或产品的记录及消费记录、客户和企业的互动记录、客户的消费行为及爱好、客户咨询的记录,动态数据的变化会对客户的消费产生很大的影响。
比如当客户有需求或者遇到问题的时候,会打电话或者留言咨询,如果第一次问题没有解决,客户会求助第二次。
但是很多时候两次信息不对等,客户就需要把问题重新讲一遍,很显然,客户会感觉不被重视,体验感变差。
要是第二次问题还没有解决,这个客户很可能就转身投入别人的怀抱里了。
动态数据会被分散到企业的不同部门、不同环节,是很难收集和把握的,所以更需要企业用心去关注、去积累、去分析。
只有通过对数据变量的分析才能发现客户流失的原因,从而不断改进,为留下来的客户提供更好的产品和服务体验。
最后,要把社会、心理、人文等因素考虑进去,可以使数据的分析结果更加准确。
在这里强烈建议有条件的企业建立详细的客户档案,包括客户基本数据、客户交易记录、客户与企业互动记录以及客户反馈的问题,数据越丰富,分析结果就会越准确。
实际上,网络营销就是要去做客户的精准分析,只有了解用户的习惯才能更高效的找到潜在客户并进行成交。
因为客户所做的每一个决策都是有原因的,而企业的每一个行为也都会对客户的决策产生影响。
所以企业可以充分利用自有的数据,挖掘出其中蕴含的客户信息、交易信息以及有价值的客户关注的重点 ,相信全面的分析也能帮助公司降低运营成本,同时提高企业的运营效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08