
数据分析师应备的知识架构
在互联网高速发展的今天,大数据依然渗透到我们的生活和工作。作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。清理数据对传统行业来说,上来就说要搞大数据,一般都会是一种噱头,因为之前的数据量不会很大,所以基本上都是一些统计分析内容为主。在这一阶段,你对数据理解就尤为重要!也就是说你要做数据分析,数据在哪里很是重要,当你不清楚你的数据的位置的时候,你的分析也就无所谈起。这里也有一个4:3:3的原则,你原始的数据要从测试,训练,验证这三个维度来训练你的数据,这样构成一个循环,好让你的数据最终的成功度提高。而当你的数据入库的时候,就采用结构化还是非结构化的时候,这点也非常重要。也是决定着你后期读取的快慢!
分析数据分析数据,这一点也关系到你的项目的成败。这一点个人感觉也是产品经理需要重要把握的地方。首先,做为产品经理,你不可能对所有行业都了解的很清楚,在这种情况下,就势必要求你能够最大限度的来理解数据的价值。在这一步,你要与业务人员深入交流,确保对数据的详细了解,然后才能够在接下的环节中脱颖而出。
算法选取在算法选取方面,个人感觉也是要结合业务来实施。首先,要弄清楚业务那边主要关注的是什么指标。而与这一个指标相关的参数有那些,这些参数都是如何来影响这些指标的。至于算法的准确度,这一点,可以通过对数据颗粒度的细化来不断提高。不同的代码对系统的资源调度是不同的,而若你对算法的了解程度最大限度决定了你最终产品的反应快慢!
需求分析有人说,这一块是最为重要的。因为深刻的感受到,在传统行业,用户的需求不明确,或者说不是那么明确。又或者是用户的需求是可以被引导的。一直以来,个人都将用户的需求分为四种:强需,弱需,真需,假需。因为不同行业,不同公司对人的需求是不同的。如何去挖掘用户的需求,并将这些需求转换成为可以落地实现的产品。
部门沟通大数据产品,我将它分为三个线,一个是产品,一个是业务,一个是研发。这样就涉及到了部门之间的沟通。业务有许多的用户需求要经过产品的人来向研发反馈,而研发也需要产品的人把自己的工作落实到实际的项目中来。这就需要产品人员来给领导层以通俗的语言来讲明白。而对合作厂家来说,要有正确的引导,才能够让对方看到合作的可能。从而为项目的发展提供动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23