京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析的10个实用窍门!
如果你的公司正着手开启你的大数据分析之旅,不要烦恼:你不是一个人,这条船上大有人在。但是你需要加倍努力才能赶上数据分析的领头羊们。这篇文章是从行业大会的讨论中总结出来的十个小窍门。

1避免华而不实
现在企业可以从传感器、智能手机中获取比以前多得多的数据,但相应的做出成果的压力也就更大了。陷入热潮特别是一些闪亮的新技术宣传热潮是很容易的。但是靠大数据技术真正获得成功却不是易事,仅仅掌握某项技能是不足以让成功一蹴而就的。今天的大数据领导者们已经在数据分析行业工作长达十年甚至更久,他们有成功的基础。
2不要盲目崇拜数据
据说数据已成为一种新“货币”并展现了自身价值。这样说可能有点夸大其词。数据公司应该只收集其需要的数据来解决业务问题即可,而不是像一头贪婪嗜财的巨龙一样大量囤积数据。
麦肯锡消费市场分析中心的首席营运官Matt Ariker说“数据本身能够成为一种竞争优势,当然你也可能让分析毫无意义。我已经老了,我在宝洁公司开始分析师生涯。那时我们会花费12周来分析两周的促销活动。你真的很需要思考这样几个问题:那些高质量的问题究竟是什么意思,你该如何来整合结构化和非结构化数据以及整理总结你的流程化分析问题的方法。否则你将一无所获。
3首先考虑商业案例
一些公司在数据分析之初,会收集所有能到手的数据,然后全部放入自己的数据池中,妄想可以有一种有魔力的算法让自己一键获得业务解决方案。但是他们往往难以有所收获。
Bodkin说“人们往往有这样的误解:数据科学家们的工作就是在周一到办公室之后说‘我又可以无所限制地做些什么有趣的事呢?’而据我所知,没有什么公司会拿出巨额预算进行无限制的数据探索。(他们会参考一些已有商业案例)”
4形成数据分析文化
你可以在最纯净的数据集上用最优秀的算法来创造出惊艳的结论,但那毫无意义,除非你的业务伙伴相信你所做的数据分析具有价值,并且相信那些数据和结论。这需要你建立一种数据分析文化。
Teradata实验室主席Oliver Ratzenberger说:“如果你分析那些领先的数据分析竞争者们就会发现,他们花费了过去的10到15年时间来形成自己的数据分析文化。有些公司曾说过自己将在接下来的90年里完成在数据分析项目上从‘爬行’到‘疾跑’的蜕变。这和技术无关,这是在说他们数据分析文化的形成。”
5快速失败积累出最终的成功
数据科学是一个往复循环的过程。在你成功把数据变成有价值的结论并实施他们之前,你总会经历各种各样的失败。最近的许多大数据领域的突破性进展,例如Apache Spark都是专注于加速这个过程。
但是大数据从业者不应该为了失败而失败,故意陷入这个失败尝试的循环过程。麦肯锡的Ariker说:“你可以进行多项测试,失败的现实仅仅预示着你会更快的失败。你所有的灵活的数据分析过程都是基于公司支持和假设驱动的。你的失败是为了改进数据分析过程并获得更好的结论,而不是不顾结果地去享受数据分析的过程。
6保证最高管理层在数据分析的一环
和管理层分享你的数据分析的成果是必要的,不仅是为了确保他们不会插手你以后的数据分析项目,也是为了保证你在分析管理层关注的问题 。
宝洁公司领导人,商业智能和数据分析领导者David Dittmann在最近的CAO峰会上说:“我们学到的一点是,你必须一直给管理层展现数据价值。而如果你一直缺席管理层的业务讨论会,我想你的工作会出现方向性的根本错误。”
7管理很无聊却是必要的
没有什么比一场有关数据分析进程和改变管理方式的讨论更让人犯困了。但是在这样一个快节奏的大数据时代,处理好所有部分不仅仅是细节问题,它更是长期成功的基石。
能够在30天里对一件事保持敏锐是很重要的。Teradata的Ratzenberger说:“但是你需要有能够这么做的基础。包括产品系列,错误处理和版本控制的集成管理是必要的。有些部分在开始的30或90天里是起作用的,但是你还需要保持其在随后依然有效。你有一副好牌在手,就需要你好好把握,一旦你出错一张,随之而来的可能就是满盘皆输。”
8保持全程思考
你可能有一个最好的预测模型。但是,除非它可以在现实世界中有效并且有较好的效益,否则它将毫无价值,只是对公司时间和资源的浪费。
麦肯锡的Ariker说:“如果你跑去对经理说‘好消息,我们的大数据平台可以生产很多数据产品,但是我需要再雇1500个人’,那估计你第二天得找份新工作了。你必须一直思考流程化数据处理和效益的平衡,并确保你在研究一个高质量问题的同时考虑好答案。”
9积少成多
在大数据领域,一气呵成地处理所有问题听上去是异常诱人的。你想要依据众多变量来建模解决业务问题,所以你去收集了有关各个业务的众多数据,然而你的算法却在剔除合适的结论。想法是美好的,结果却不尽如人意。
肯尼索州立大学的应用统计和数据科学教授Jennifer Lewis Priestley讲了一个故事:有个数学专业的学生建立了一个极好而又极差的模型,这个模型有非常高的准确率,但是产生了2500个预测器。“这毫无意义。你不可能去操作2500个预测器。所以我让那个学生去筛选出四个我可以实际使用的预测器”她在2015SAS数据分析大会上说。
10不要去猎取“独角兽”
精通统计学、科技和商业的数据科学家们被称作“独角兽”,因为他们是如此的稀有(事实上并不存在独角兽,因为他们是神话生物,但那是另外的故事了)。
尽管这样的数据科学家确实存在,但这不值得你浪费时间去挖他们来你的公司。ThinkBig的Bodkin说:“我所有的客户都在尝试着挖人。但是你无法从一个人身上就得到想要的价值,你只能从一个团队——一个高效的数据科学团队得到你想要的数据分析结果。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22