
打破枷锁 将大数据价值淋漓尽致发挥
在当前的大数据时代下,大数据在政府中的应用也日渐普遍,但是政府大数据的价值应用会受制于很多因素,真正让大数据发挥其服务价值和体现人本关怀,政府需做到以下几点。
政府及其工作人员应树立“大数据思维”。大数据治国,目前正成为各个国家和地区提升治理能力、实现政府公共服务的技术创新、管理创新和服务模式创新的基本追求。大数据在公共管理领域的应用,不仅使传统难题变得迎刃而解,更成为新时期应对新挑战、解决新问题的必然选择。在新加坡,智能交通综合信息管理平台,在预测交通流速和流量方面有高达85%的准确率,通过有效的引导和干预,能显著提升高峰时段的车辆通行效率;美国农业大数据在改善农业环境、增加生产效率、政策调整等方面极大助推了其农业发展。信息化时代,政府是数据时代的财富拥有者,政府作为政务信息的采集者、管理者和占有者,具有其他社会组织不可比拟的信息优势,更应该积极主动地开发大数据的价值效用。
统一共享的数据平台是关键。在不改变数据所有权的前提下,通过对各部门现有数据横向和纵向的清理和整合,解决数据的部门化、碎片化、分裂化,是实现大数据发展的重要前提。因此,迫切要求构建统一的、共享的数据平台,实现数据标准、格式的统一和共享。长期以来,我国的信息化是以部门为中心展开的,客观上形成了行业垂直的信息化体系,在地方上形成了条块分割的“信息孤岛”,数据开放需要纵向层层审批,造成了信息在一个区域平台共享的难度。政府利用大数据,就要推动不同部门和领域间的数据交汇、共享和流通,促使政府部门摆脱数据开放使用的审批,转向在科学分析数据的基础上有针对性地指导经济和社会发展。当前我国需要在国家层面加快建设统一的大数据管理平台,整合现有相关职能机构,设立大数据资源管理机构。如此,信息资源共享模式也将发生相应转变,从传统的部门间协商信息资源共享模式,改为“部门—大数据平台—部门”模式,既保证数据的一致性、共识性,也可打破信息共享的部门壁垒。另外可建立政府数据资产登记制度,对政府数据资产进行登记,实施数据资产目录公开,规范数据资产管理,推动政府数据资源整合、公开共享、开发利用。
制定政府大数据建设和运用方面的国家规划。大数据建设、开发和运用是一个新兴事物,缺乏自上而下的规划、法律法规、执行标准、开放标准。继国家部委信息化基础设施建设之后,各省市自治区对大数据建设抱有高度热情,如上海、北京、贵州、广东、重庆、陕西、湖北等地都提出建设大数据的计划。在缺乏统一规划和相应的法律及标准的前提下,各自为战、画地为牢的建设模式,有可能加剧数据在横向和纵向两个方向上的“孤岛效应”,势必严重制约大数据的服务价值和人本关怀等功能,还会造成基础设施的重复建设和巨大的资源浪费。因此,发挥中央网络安全和信息化领导小组统领作用,遵照相关法律、法规和标准,解决部门间、条块间的数据关联与集成,促进现有各类数据的有序、有效集成,盘活这些数据和信息,显得极为迫切和重要。
树立“需求本位”的大数据建设理念。大数据建设和开放使用不是以政府能够供给为导向,而是以公众和社会的实际需求为导向,这是各个国家大数据开发的基本趋势。美国的信息化建设一直秉承着“以公众需求为导向”的理念,德国政府“让数据而不是公民跑路”,都充分体现了尊重公民和社会需求。“需求本位”的重点不是要求政府产出数据资源,而是要求政府根据需求进行数据建设和开发;“需求本位”还倒逼政府放弃长期以来“部门本位”的数据生产模式,促使部门之间实现数据资源的整合共享,以适应“需求本位”对数据资源的要求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08