
打破枷锁 将大数据价值淋漓尽致发挥
在当前的大数据时代下,大数据在政府中的应用也日渐普遍,但是政府大数据的价值应用会受制于很多因素,真正让大数据发挥其服务价值和体现人本关怀,政府需做到以下几点。
政府及其工作人员应树立“大数据思维”。大数据治国,目前正成为各个国家和地区提升治理能力、实现政府公共服务的技术创新、管理创新和服务模式创新的基本追求。大数据在公共管理领域的应用,不仅使传统难题变得迎刃而解,更成为新时期应对新挑战、解决新问题的必然选择。在新加坡,智能交通综合信息管理平台,在预测交通流速和流量方面有高达85%的准确率,通过有效的引导和干预,能显著提升高峰时段的车辆通行效率;美国农业大数据在改善农业环境、增加生产效率、政策调整等方面极大助推了其农业发展。信息化时代,政府是数据时代的财富拥有者,政府作为政务信息的采集者、管理者和占有者,具有其他社会组织不可比拟的信息优势,更应该积极主动地开发大数据的价值效用。
统一共享的数据平台是关键。在不改变数据所有权的前提下,通过对各部门现有数据横向和纵向的清理和整合,解决数据的部门化、碎片化、分裂化,是实现大数据发展的重要前提。因此,迫切要求构建统一的、共享的数据平台,实现数据标准、格式的统一和共享。长期以来,我国的信息化是以部门为中心展开的,客观上形成了行业垂直的信息化体系,在地方上形成了条块分割的“信息孤岛”,数据开放需要纵向层层审批,造成了信息在一个区域平台共享的难度。政府利用大数据,就要推动不同部门和领域间的数据交汇、共享和流通,促使政府部门摆脱数据开放使用的审批,转向在科学分析数据的基础上有针对性地指导经济和社会发展。当前我国需要在国家层面加快建设统一的大数据管理平台,整合现有相关职能机构,设立大数据资源管理机构。如此,信息资源共享模式也将发生相应转变,从传统的部门间协商信息资源共享模式,改为“部门—大数据平台—部门”模式,既保证数据的一致性、共识性,也可打破信息共享的部门壁垒。另外可建立政府数据资产登记制度,对政府数据资产进行登记,实施数据资产目录公开,规范数据资产管理,推动政府数据资源整合、公开共享、开发利用。
制定政府大数据建设和运用方面的国家规划。大数据建设、开发和运用是一个新兴事物,缺乏自上而下的规划、法律法规、执行标准、开放标准。继国家部委信息化基础设施建设之后,各省市自治区对大数据建设抱有高度热情,如上海、北京、贵州、广东、重庆、陕西、湖北等地都提出建设大数据的计划。在缺乏统一规划和相应的法律及标准的前提下,各自为战、画地为牢的建设模式,有可能加剧数据在横向和纵向两个方向上的“孤岛效应”,势必严重制约大数据的服务价值和人本关怀等功能,还会造成基础设施的重复建设和巨大的资源浪费。因此,发挥中央网络安全和信息化领导小组统领作用,遵照相关法律、法规和标准,解决部门间、条块间的数据关联与集成,促进现有各类数据的有序、有效集成,盘活这些数据和信息,显得极为迫切和重要。
树立“需求本位”的大数据建设理念。大数据建设和开放使用不是以政府能够供给为导向,而是以公众和社会的实际需求为导向,这是各个国家大数据开发的基本趋势。美国的信息化建设一直秉承着“以公众需求为导向”的理念,德国政府“让数据而不是公民跑路”,都充分体现了尊重公民和社会需求。“需求本位”的重点不是要求政府产出数据资源,而是要求政府根据需求进行数据建设和开发;“需求本位”还倒逼政府放弃长期以来“部门本位”的数据生产模式,促使部门之间实现数据资源的整合共享,以适应“需求本位”对数据资源的要求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29