京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一句话,认识到大数据时代的到来
1,什么是大数据
大数据,是大数据文件,还是大量的数据文件?要多大,KB,MB,GB,TB,PB,EB?还是说是大范围的数据,包括文本,图像,视频。。。
至少到2014年,大数据还没有一个准确的范畴定义。这是IEEE关于大数据的特别报告集里的说法。这里的问题就在于,一个大字,每天都在变:更多的设备被应用到日常生活,每天都有超越以往所有的比特在网络产生,流动,湮灭,同样,每天都有更多的超越以往的对这些比特流的使用,应用在发生,而这样的使用,应用,又进一步产生更大量的数据流。

那么,就是大数据是什么?
2,大数据是各种 IT 技术发展的汇聚点
2.1,光纤通信,DSL接入,Wifi,LTE,等等等等的通信连接转换设备,越来越多的带宽,越来越低廉的价格,使得网络大数据传输成为可能。
2.2,光学技术与半导体集成电路技术使得大规模的数据存储成为可能。
2.3,各种 sensor 技术使得数据的日常获取越来越便捷。
2.4,数据库技术的长时间发展与广泛应用提供了足够的,初始的结构化数据的来源,并提供了新数据处理方式的原始脉络。
2.5,人工智能技术,包括图像视频文本的理解分析,原始数据的结构化挖掘,自然语言处理,机器学习等等等,使得从已有数据中获得新的惊喜知识成为每天都在发生的事情。
2.6,摩尔定律使得数据处理的成本越来越低廉,但是效率却越来越高。
2.7,移动通信技术使得每个人每个时刻在每个地方都在为数据的越来越大做出贡献。
2.8,网络信息检索技术,使得数据/知识的应用与分布越来越扁平化。
2.9,基于上述各项技术的发展,越来越多的应用领域得到了新的推动助力。。。
3,我们能够从大数据中得到什么?
2007年一月11日,Jim Gray,微软的资深科学家,在给美国国家研究委员会的报告中,提出了一种新的科学研究范式:密集数据里的科学发现。这是自观察,实验,计算机模拟后的又一种科学研究范式。
换句话说,人类有了一种新的知识获取的方式。而这个方式是自生产的:数据,数据中获得知识,知识本身就是数据,从数据中再获得知识,。。。以此递进,这是一种自生产,自组织的,自我成长的,知识体系。
3.1,举例而言,你问过自己下面三个问题吗?
你喜欢恐怖片么?你曾经独自去外国旅行过么?觉得去驾驶帆船好玩么?
好吧,告诉你为什么你可以问问自己这么三个问题。这是美国一个社交网站总结出来的,如果你想找能够相守一生的伴侣的话,这三个问题的答案可以作为参考。(我觉得在中国可能不靠谱)。
3.2,那么来一个靠谱一点的吧:你和女友/老婆经常吵架为了什么?钱么?缺钱么?。。。。
大数据分析结果是:不是因为缺钱,而是因为你们俩对如何花钱不一致(这不是废话么)。
4,大数据下的挑战
首先是数据安全。谁能使用,谁应该拥有,谁能够维护我们的数据,并保证这样的数据应用不会给我们带来安全上的问题?
然后是个人的隐私,你懂的
而且人工智能还不那么靠谱吧。。。连我的 l n 不分都分辨不出来
难道我们就能够依赖冷冰冰的机器,网络,和数据吗?还要人干吗?
5,毋庸置疑,大数据时代已经来到了。你我都在其中。
互联网上每秒钟都在不停地刷新上传下载流通各种数据。你知道你不是用并不意味着你不在其中。
互联网上每秒钟都在产生海量的信息流动以满足各种应用的需求,而这些海量的信息流动就是知识的流动与生产,并进一步产生数据,知识,这已经就是一种新的智能的存在。
大数据意味着统计,预测,结构化的信息随时随地都在发生,产生,应用,这是我们人类新的智能体系。
新的时代已经来了。
6,你我如何做?
投身于IT吗?去做大数据吗?
No。因为在挨踢的想挨踢得人太多了,不缺一个你,也不缺一个我。
干自己的活,让大数据为你我而服务,用大数据提升你我,用大数据改善自己的生活,推动自己的事业,仅此就足够你我忙不过来了。
一句话,认识到大数据时代的到来,站稳自己的领域,将两者结合起来,就是你我在大数据下的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01