
一句话,认识到大数据时代的到来
1,什么是大数据
大数据,是大数据文件,还是大量的数据文件?要多大,KB,MB,GB,TB,PB,EB?还是说是大范围的数据,包括文本,图像,视频。。。
至少到2014年,大数据还没有一个准确的范畴定义。这是IEEE关于大数据的特别报告集里的说法。这里的问题就在于,一个大字,每天都在变:更多的设备被应用到日常生活,每天都有超越以往所有的比特在网络产生,流动,湮灭,同样,每天都有更多的超越以往的对这些比特流的使用,应用在发生,而这样的使用,应用,又进一步产生更大量的数据流。
那么,就是大数据是什么?
2,大数据是各种 IT 技术发展的汇聚点
2.1,光纤通信,DSL接入,Wifi,LTE,等等等等的通信连接转换设备,越来越多的带宽,越来越低廉的价格,使得网络大数据传输成为可能。
2.2,光学技术与半导体集成电路技术使得大规模的数据存储成为可能。
2.3,各种 sensor 技术使得数据的日常获取越来越便捷。
2.4,数据库技术的长时间发展与广泛应用提供了足够的,初始的结构化数据的来源,并提供了新数据处理方式的原始脉络。
2.5,人工智能技术,包括图像视频文本的理解分析,原始数据的结构化挖掘,自然语言处理,机器学习等等等,使得从已有数据中获得新的惊喜知识成为每天都在发生的事情。
2.6,摩尔定律使得数据处理的成本越来越低廉,但是效率却越来越高。
2.7,移动通信技术使得每个人每个时刻在每个地方都在为数据的越来越大做出贡献。
2.8,网络信息检索技术,使得数据/知识的应用与分布越来越扁平化。
2.9,基于上述各项技术的发展,越来越多的应用领域得到了新的推动助力。。。
3,我们能够从大数据中得到什么?
2007年一月11日,Jim Gray,微软的资深科学家,在给美国国家研究委员会的报告中,提出了一种新的科学研究范式:密集数据里的科学发现。这是自观察,实验,计算机模拟后的又一种科学研究范式。
换句话说,人类有了一种新的知识获取的方式。而这个方式是自生产的:数据,数据中获得知识,知识本身就是数据,从数据中再获得知识,。。。以此递进,这是一种自生产,自组织的,自我成长的,知识体系。
3.1,举例而言,你问过自己下面三个问题吗?
你喜欢恐怖片么?你曾经独自去外国旅行过么?觉得去驾驶帆船好玩么?
好吧,告诉你为什么你可以问问自己这么三个问题。这是美国一个社交网站总结出来的,如果你想找能够相守一生的伴侣的话,这三个问题的答案可以作为参考。(我觉得在中国可能不靠谱)。
3.2,那么来一个靠谱一点的吧:你和女友/老婆经常吵架为了什么?钱么?缺钱么?。。。。
大数据分析结果是:不是因为缺钱,而是因为你们俩对如何花钱不一致(这不是废话么)。
4,大数据下的挑战
首先是数据安全。谁能使用,谁应该拥有,谁能够维护我们的数据,并保证这样的数据应用不会给我们带来安全上的问题?
然后是个人的隐私,你懂的
而且人工智能还不那么靠谱吧。。。连我的 l n 不分都分辨不出来
难道我们就能够依赖冷冰冰的机器,网络,和数据吗?还要人干吗?
5,毋庸置疑,大数据时代已经来到了。你我都在其中。
互联网上每秒钟都在不停地刷新上传下载流通各种数据。你知道你不是用并不意味着你不在其中。
互联网上每秒钟都在产生海量的信息流动以满足各种应用的需求,而这些海量的信息流动就是知识的流动与生产,并进一步产生数据,知识,这已经就是一种新的智能的存在。
大数据意味着统计,预测,结构化的信息随时随地都在发生,产生,应用,这是我们人类新的智能体系。
新的时代已经来了。
6,你我如何做?
投身于IT吗?去做大数据吗?
No。因为在挨踢的想挨踢得人太多了,不缺一个你,也不缺一个我。
干自己的活,让大数据为你我而服务,用大数据提升你我,用大数据改善自己的生活,推动自己的事业,仅此就足够你我忙不过来了。
一句话,认识到大数据时代的到来,站稳自己的领域,将两者结合起来,就是你我在大数据下的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29