
大数据在各行业的应用和趋势
无论你在哪里工作,或者你住在哪里,传输,收集和分析数据将在每一天发生在你的周围,并可能在今后几年里从根本上保持改变世界的各种产业。
虽然你可能会只专注于你自己的地域或工作领域,当涉及到大数据时,重要的是要意识到这是所有行业目前面临的趋势。这样,你就可能知道你的生活方式和你的职业生涯可能会出现什么样的影响,以及在自己的部门中可以利用的新机会或获得的想法。
通过了解当前不同行业使用的大数据的一些方法,可以知道这对对未来意味着什么。
医疗卫生
医疗卫生是大数据对企业的影响显著的行业之一。这有很多种方法,其中采集和大量的信息分析,将会继续改变提供医疗保健的方式。
社会服务
以社会服务业为例,在未来的几年内,在完成了社会工作高级研究之后,可能会发现可以使用整理资料,寻找服务和病人,以及在哪里以及如何生活,发现自己与他们之间的相关性。
当他们第一次进入护理系统,工作人员可以查看比如患者的家庭地址,他们与社会工作者之间的联系,或者他们的住院率和住院天数。他们可以分析家庭状况,干预措施和结果之间的相关性,以确定潜在患者的状况。
甚至有可能提前获得家庭暴力等负面信息。此外,大数据也应该使社会工作者更容易识别客户的需求,甚至他们自己没有意识到的需求,然后直接面向他们提供量身定制的服务。
临床试验
卫生保健受大数据可用性影响的另一个领域是临床试验。研究人员可以使用大量的数据挑选适合他们试验的最好的科目。
此外,制药公司之间的数据的共享,也可能会各种药物的有了新突破。随着制药业的研究人员共享信息,他们发现,一些药物的治疗范围可能比以前认为的更广泛。
制造行业
制造行业企业,尤其是那些基于流程的部门,也在使用大数据来进行广泛的变革。
降低成本和增加利润
特别是,制造商正在使用先进的分析技术,以降低成本,提高产量。生产操作和车间的信息被用来提供分析洞察,这有助于简化流程,改进产品。
一个例子,例如生物制药生产中,其中制造商通常必须监测超过200个变量,以确保成分保持纯净,所有物质创造坚持合规性要求。目前在采用大数据之后,企业现在可以提高他们的生产的质量,准确性和产量,可以节省大量的成本,并生产出大量的产品。
优化生产和定制
大数据也被用来优化生产计划。企业可以分析客户的信息,供应商和机器的可用性(以及相应的成本限制),以提高他们的收益率。同样,他们也可以更准确地预测产品的需求和生产,并比以前更快地为客户提供服务和支持。
大数据可以使制造商更容易地销售更多的定制产品,或为订购的产品制定出更加有利可图的价格。虽然这些类型的产品通常比“现成的”项目提供更高的毛利率,但如果生产过程没有正确的计划,其涉及的成本可能会激增。
然而,通过使用先进的分析技术,企业可以更容易地解释他们的定制或按需的产品配置,他们可以在生产计划的基础上,让风险对生产机器,工作人员和空间的可用性影响最小。
在金融领域,大数据正在改变银行和其他机构如何做的事情,如产生客户智能,降低风险,并满足各种监管目标。
了解客户
许多银行现在使用大数据,以提高他们对客户的理解,以及对他们的客户进行定位,并将产品销售给消费者,无论是在零售银行,贷款,信用卡和财富管理等领域。基金经理和其他组织也可能使用大数据继续增加代理和客户互动。
许多金融机构也在使用大数据来进行预测分析,以帮助他们满足不断变化的监管要求,并规避日常运营中的风险。对于大量信息的跟踪和研究将有可能越来越多地应用在欺诈和风险部门,组织可以加快实时分析和预警,并改善他们的财务模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30