
【连载3】如何使用spss做非参数检验
非参数检验是一个相当宏大的命题。由于实际情况的复杂多变,因此非参数检验包括了许多的各种各样的检验方法。之前我们提过,参数检验的使用条件是被检验的样本总体服从正态分布,而非参数检验的使用条件自然就是总体不服从或不确定是否服从正态分布。(实际上,这里要特别说明一下,尽管非参数检验的使用条件更宽松,但是考虑到精确性,不是特殊要求的话,我们还是尽可能的使用均值检验。)
比较常见的单样本非参数检验包括游程检验和单样本K-S检验。
游程检验:
它通常用于检测两个不同的观测值出现的次序是否具有随机性。举个例子,假如我们想知道每天来门诊就诊的人是否生病的次序是否随机,那么我们就使用游程检验。我们记录下来个案依次是否生病,比如是为1,否为0。然后我们就有了一个由0和1构成的变量列,
我们选择分析——非参数检验——旧对话框——游程,在主面板的检验变量列表里选入我们的0,1变量列。选项卡里边选择描述性,其他默认。割点可以全选。
输出结果看p值就可以了(我真的不想再重复怎么看p值了)。
单样本K-S检验;
这个就比较重要了。这个检验的目的在于观测样本的分布。哦,想想也知道很重要。只要我们想做相关和回归,那我们就最好用K-S检验来检查一下样本的分布。毕竟pearson相关系数有效的一个重要条件就是样本服从正态分布。
我们选择分析——非参数检验——旧对话框——1样本K-S,在主对话框的检验变量列表里边选入我们想检验分布的变量(比如一群病号的血细胞数),选项卡里勾选描述性和四分位数,其他默认。在检验分布的下边有四个供勾选的框框,这个要注意一下,常规指的就是正态分布,相等则是指均匀分布,勾选你想检验的分布(一般是正态分布)。确定以后就可以看结果了。
描述性统计量表会给你一些基本指标,帮助你感受这些数据。K-S检验表的p值会告诉你样本是否服从指定的分布,如果是的话,表里边还有一些其他的指标可以参考。
单样本非参数检验已经结束了(怎么这么少?),下边我们说一下独立样本非参数检验。
两独立样本非参数检验:
打开菜单分析——非参数检验——旧对话框——2个独立样本,在主面板里边检验变量选入检验变量,分组变量选入分组变量,选项卡中选入描述性,四分位数,其他默认。在检验类型里边有四个供勾选的框框,我们一一学习。
Mann-whitney 检验:
就是大名鼎鼎的秩和检验。
这个检验利用样本观察值得秩来推断两样本所在总体的分布是否相同(不晓得什么是秩的回去翻一遍你们的高数课本)。这是一个最常用的检验。举例,假设我们知道一组患病的人和不患病的人的血细胞数,想检查是否具有差异,那么我们就使用秩和检验,我保证没举错例子,这个例子确实也可以用独立样本t检验来做(希望大家还记得什么叫独立样本t检验),当然也可以用秩和检验来做。
它会给出描述性统计量,秩表,检验统计量表。在最后的一个表里边我们通过p值判断差异是否显著。
Moses极端反应检验:
它适用于实验条件导致两个不同方向的极端反应情况(多用于医学,比如有的药物会导致一部分病人好转的同时也会导致一部分病人恶化)。
它通过比较实验组和观察组,会告诉你是否产生了极端反应。(很神奇是不是?)
两样本K-S检验:
这个检验用来判断两个样本的分布是否相同。也是看p值哈。
Wald wolfowit游程检验:
用来检验两样本是否来自相同的总体。
注意:K-S检验适用于数值变量资料或者有序分类资料。
多个独立样本非参数检验:
打开菜单分析——非参数检验——旧对话框——K 独立检验,在主面板的检验变量选入想检验的变量,分组变量选入分组变量。
检验类型有三种
K-W检验:
用来判断各样本分别代表的总体是否一致,(相当于单因素方差分析),适用于数值变量和有序分类变量。结果会给出秩,检验统计量。通过p值判断差异性。若想在进行两两比较,那就要用到上边介绍的秩和检验来进行比较了。
中位数:
适用于数值变量资料。用来检验样本代表的总体中位数是不是相等。这个用途还是比较广泛的。
Jonckheere-Terpstra检验:
这个检验用来处理完全随机的资料,比如研究随着年龄增加,学习成绩是否也增加?这种有序分组的变量就用这个检验来检验。(我真有点懒得介绍这么冷门的检验的冲动,不过为了完整还是写一下吧。)
两相关样本非参数检验:
打开两个关联样本检验主面板,检验对里边选择两个相关变量,检验类型有四种。
Wilcoxon:
它用来检验两个变量的分布是否有差异。比较常用。比如一种药物治疗前和治疗后是否有差别?就用这个检验。
符号检验和wilcoxon差不多,也是检查差值的。
Mcnemar检验:
上边两个都是数值型的连续性资料,这个检验则用于配对计数资料,将两组人进行配对,观察他们的某个指标是否有差异。
边际同质性检验是mcnemar检验的一般化和扩展,用于多分类配对计数资料。比如检验甲观察的分类结果和乙观察的分类结果是否有差异。(分好多类)
多个相关样本非参数检验:
打开多个相关样本检验主面板,选入检验变量,检验类型一共有三种。
Friedman检验:
用于检验多个相关样本是否来自同一总体,是wilcoxon的扩展。
KendallW检验:
检验样本的一致性的好坏(不考虑分布的形状,仅考虑分布是否一致)。
Cochran Q检验:
用于二分数据时,是mcnemar检验的延伸,可以比较多个二分变量的比例的差异是否显著。
非参数检验大概就是这些内容了。和参数检验一样,这些检验的操作操作并不复杂,结果也不难判断,学习的难点在于记住这些不同的检验方法的适用的不同范围。需要多做一些练习,才可以巩固掌握住非参数检验的内容。CDA数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15