
使用Excel绘制F分布概率密度函数图表
利用Excel绘制t分布的概率密度函数的相同方式,可以绘制F分布的概率密度函数图表。
F分布的概率密度函数如下图所示:
其中:μ为分子自由度,ν为分母自由度
Γ为伽马函数的的符号
由于Excel没有求F分布的概率密度函数可用,但是F分布中涉及到GAMMALN()函数,而excel是提供GAMMALN()函数的,所以我们可以使用excel中的GAMMALN()函数的运算来计算得到F分布的概率密度函数。(可参见【附录】)
经转换后上述公式为:
F(X,df1,df2)=EXP(GAMMALN((DF1+DF2)/2))*(DF1^(DF1/2))*(DF2^(DF2/2))*(X^(DF1/2-1))/EXP(GAMMALN(DF1/2))/EXP(GAMMALN(DF2/2))/((DF2+DF1*X)^((DF1+DF2)/2))
……………………………………………………………公式(1)
现以分子自由度μ=20,分母自由度ν=20为例,求F分布的图表,可由以下几步进行:
第1步 在Excel单元格中输入自变量
在A列中,在单元格A2中输入0,在单元格A3中输入0.1,递增0.1,选中单元格A2与A3,按住右下角的填充控制点一直拖到单元格A46是4.4为止,A列的这些数据就作为随机变量t的取值。
第2步 在单元格B2中输入计算t分布的概率密度函数的公式
对于公式(1),由于自由度μ=20 ,ν=20则由DF1=20,DF2=20代入;自变量X就是单元格A2的值,所以按Excel相对引用的规则,X由A2代入即可,于是单元格B2内容是
=EXP(GAMMALN((20+20)/2))/(EXP(GAMMALN(20/2))*EXP(GAMMALN(20/2)))*(20/20)^(20/2)*A2^(20/2-1)*(1+20/20*A2)^(-1/2*(20+20))
第3步 复制公式
按住单元格B2右下角的填充控制点,向下一直拖曳到B46,将B2的公式填充复制到B列的相应的单元格。
第4步 作F分布概率密度函数图表
选择A1:B46,选“插入”-“图表”-“散点图”-“带平滑线的散点图”,输入标题,调整字号、线型等格式,完成t分布概率密度函数图,如图-1所示:
如将上图的图表类型换成二维面积图,则如图-2-1(2003版)和图-2-2(2010版)所示:
如将上图的图表类型换成三维面积图,则如图-3-1(2003版)和图-3-2(2010版)所示:
为 了方便调整不同的自由度参数值观察图形变化,在Excel数据表中可在第一行的某几个单元格如I1、I2;J1、J2;K1、K2;L1、L2;M1、 M2输入不同参数,然后在公式引用这几个参数时使用不同的方式:列数据为相对引用,而行数据为绝对引用,如I$1、I$2;J$1、J$2;K$1、 K$2;L$1、L$2;M$1、M$2。而A列自变量值则使用:列数据为绝对引用,而行数据为相对引用,如$A4、$A5、$A6等。
例:B4单元格的公式则为:
=EXP(GAMMALN((I$1+I$2)/2))*(I$1^(I$1/2))*(I$2^(I$2/2))*($A4^(I$1/2-1))/EXP(GAMMALN(I$1/2))/EXP(GAMMALN(I$2/2))/((I$2+I$1*$A4)^((I$1+I$2)/2))
这样引用的公式可以直接拖曳复制B4:F48。
数据表输入截图如图-4:
在公式输入后,选择单元格区间A3:F48,在同一图表作出五种不同自由度的平滑曲线的散点图,如图-5所示:
【附录:关于GAMMALN()函数和EXP()函数】
函数 GAMMALN 的计算公式如下:
伽马函数Γ(x)是个定积分,无法直接计算,可由GAMMALN()函数和EXP()函数,并利用对数恒等式:
间接求得,下面对以上内容使用Excel中的相关文字加以说明。
GAMMALN函数的作用: 返回伽玛函数Γ(x)的自然对数。
语法:
GAMMALN(x)
X为需要计算函数 GAMMALN 的数值。
GAMMALN(x)=LN(Γ(x))
说明:
如果 x 为非数值型,函数 GAMMALN 返回错误值 #VALUE!。
如果 x ≤ 0,函数 GAMMAIN 返回错误值 #NUM!。
数字 e 的 GAMMALN(i) 次幂等于 (i-1)!,其中 i 为整数,常数 e 等于 2.71828182845904,是自然对数的底数。
GAMMALN(8)=8.525161
EXP(GAMMALN(8))=5040=(8-1)!=FACT(7)
FACT(N)为返回N-1的阶乘(N-1)!=1×2×3×4×…×(N-2)×(N-1)的函数(其中N为自然数)
关于EXP()函数:
EXP()返回 e 的 n 次幂。常数 e 等于 2.71828182845904,是自然对数的底数。
语法
EXP(number)
Number 为底数 e 的指数。
说明
若要计算以其他常数为底的幂,请使用指数操作符 (^)。
EXP 函数是计算自然对数的 LN 函数的反函数。
EXP(1)=2.718282(e的近似值)
EXP(2)=7.389056
EXP(1)=20.08554
EXP(LN(3))=3
于是为求伽马函数Γ(x)首先要回忆一个最基本的恒等式:
即可得:
把该恒等式用于伽马函数的取得,可以由以下两步进行:
先用GAMMALN(x),取得自然对数;
再用EXP(GAMMALN(x)),取得伽马函数的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28