
如何通过大数据来获取商业价值
如今,我们已经可以从网上看到很多的企业利用大数据获取商业价值的案例,我们可以参考这些案例并以之为起点,当然,我们也可以从大数据中挖掘出更多的商业价值。
据2013年TDWI关于管理大数据的调查显示,89%的受访者认为大数据是一个机会,而在2011年的大数据分析的调查中这个比例仅为70%。在这两次调查中受访问者均普遍认为,要抓住大数据的机会并从中获取商业价值,需要使用先进的分析方法。
此外,从大数据中获取商业价值的方法还包括数据探索、捕捉实时流动的大数据并把新的大数据来源与原来的企业数据相整合。那么,我该如何从大数据的分析中获取到我们想要的商业价值呢?
1、从数据分析中获取商业价值
请注意,这里涉及到一些高级的数据分析方法,例如数据挖掘、统计分析、自然语言处理和极端SQL等等。与原来的报告和OLAP技术不同,这些方法可以让你更好地探索数据和发现分析见解。
2、对已收集到的大数据进行分析
许多公司都收集了大量的数据,他们感觉这些数据存在着商业价值,但并不知道怎样从这些弄出来的值大的数据。不同行业的数据集有所不同,比如,如果你处于网络营销行业,你可能会有大量Web站点的日志数据集,这可以把数据按会话进行划分,进行分析以了解网站访客的行为并提升网站的访问体验。
同样,来自制造业的质量保证数据将有助于公司生产出更可靠的产品和选择更好的供应商,而通过RFID数据可以帮助你更深入地供应链中产品的运动轨迹。
3、重点分析对行业有价值的大数据
大数据的类型和内容因行业而异,每一类数据对于每个行业的价值是不一样的。比如电信行业的呼叫详细记录(CDR),零售业、制造业或其他以产口为中心的行业的RFID数据,以及制造业(特别是汽车和消费电子)中机器人的传感器数据等等,这些都是各个行业中非常重要的数据。
4、理解非结构化的大数据
非结构化的信息主要指的是是使用文字表达的人类语言,这与大多数关系型数据有着很大的不同,你需要使用一些新的工具来进行自然语言处理、搜索和文本分析,把基于文本内容的业务流程进行可视化展示。
比如,保险索赔过程,医疗病历记录,各个行业的呼叫中心和帮助台应用程序,以及以客户为导向的企业情感分析等内容均可以在进行处理后以可视化的形式表现出来。
5、使用社交媒体数据来扩展现有的客户分析
客户的各种行为比如评论品牌、评价产品、参与营销活动或表示他们的喜好等等,会在客户中相互影响。社交大数据可以来自社交媒体网站,以及自有的客户能够表达意见及事实的渠道。
我们可以使用预测性分析发现规律和预测产品或服务的问题,我们也可以利用这些数据来评估市场知名度、品牌美誉度、用户情绪变动和新的客户群。
6、把客户的意见整合到大数据中
通过运用大数据(与原有的企业资源集成),我们可以对客户或其他商业实体(产品,供应商,合作伙伴)实现360度全景分析,分析的维度属性从几百个扩展到几千个,新增的粒状细节带来更准确的客户群细分,直销策略和客户分析。
7、整合大数据以改善原有的分析应用
对于原有的分析应用,大数据可以扩大和扩展其数据样本,尤其在依赖于大样本的分析技术的情况下,比如:统计或数据挖掘;而在欺诈检测、风险管理或精确计算的情况下同样也得用上大样本的数据。
8、探索大数据以发现新的商业机会
很多大数据都是来自一些新的来源,这代表客户或合作伙伴互动的新渠道。和任何新的数据来源一样,大数据都得去探索,通过数据探索,你可以了解一些之前所不知道的商业模式和事实真相,比如:在每月提交的数据报告分析表中的新的客户群细分、客户行为、客户流失的形式,和最低成本的根本原因等等。
9、分析大数据流,提升业务动作水平
实时监测和分析的程序已经在企业运营中存在了很多年,那些需要全天候运行的能源、通讯网络或任何系统网络、服务或设施的机构早就在使用这类型的程序。
最近,从监控行业(网络安全、态势感知、欺诈检测)到物流行业(公路或铁路运输、移动资产管理、实时库存),越来越多的组织正在利用大数据流的应用。
目前大数据分析仍主要以批量和离线的方式执行,但随着用户与技术的成熟,大数据分析将会进入实时分析的时代。
虽然很多人已有了这样一个认识:大数据将为我们呈现一个新的商业机会,但目前仅有少量公司可以真正的从大数据中获取到较多的商业价值,究其原因还在于大数据处理的技术。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07