
分析师一定要看!用数据讲故事的五个步骤
在数字时代初期,数据只是数学家与科学家们讨论的话题。而如今,不管任何领域,任何人,都逃脱不了对数据的讨论和研究。不光我们经常使用的在线服务依赖数据,我们本身也是产生我们生活各方面信息源源不断的数据来源。
无论是人体数据——由于可穿戴设备的兴起——我们在家的能耗,或个人财务相关的数据:我们都正产生着大量数据,而当前我们需找到方法去了解它对我们的意义。
个性化数据在企业间兴起一股收集客户信息并寻求价值带给客户的热浪。对设计师的挑战在于,如何找到方法以降低大量数据造成的复杂性,并赋予数据一个易于人类辨识的原型。
数据皆人人可用之。它向用户提供了有意义和易理解的切实可行方式。这就是设计与众不同之处的能量所在:通过可视化帮助人们在纷繁的数据世界中寻找方向,从而改进人们的生活。
数据可视化从200多年前基本饼图发明时的形成至今已走过漫长的历程。如今,由于数据大潮的到来和人们关于数据使用的讨论,一种新的设计语言正在兴起,它可以优美地将大数据中的繁杂简化成既美观又富有意义的可视化图形。
因此不管你是要将健康福祉、购物习惯还是在社论中将数据表示成何种形状,奥菲尤尔小组总结出以下在面对数据可视化挑战时应遵循的五条核心原则。
1.理解数据源
确保了解你工作的数据。这是理解数据至关重要的第一步。你需要对宏观的全局有所理解:为什么收集这些数据?公司对于这些数据赋予什么样的价值?用户是谁?如何能让数据作用最大化?深入理解这些问题,能为创造出既有意义又人性化的可视化信息,打下重要的基础。
2.明确你要讲的故事
好的数据可视化不仅仅是一张美丽的图片,它还能讲述一个任何人都能明白的故事。因此,至关重要的是,你首先需明确你想讲的故事,然后将数据作为一种润色故事的方式。
例如,我们最近帮助瑞典移动运营商“3”公司重新设计了之前经常让用户混淆的月度手机账单,使其以用户为中心便于用户使用。3公司希望设计出更为有效易用的话单,而不是继续呈现给用户难懂的一串号码。
好的数据可视化讲了一个大家都能看懂的故事。
我们工作的成果是一个“我的3”的APP应用,能让用户实时查看套餐情况,以知悉套餐余量。通过数据可视化,我们设计了漂亮新颖的交互方式让用户查看数据情况。同时也很好地展示了3公司的客户关系。
3.定义用户体验
确保你使用数据是用于引导而非支配整个体验。用户在理解与学习并形成自己体验的过程中,数据应该扮演幕后角色。值得探索的是,如何在可视化数据中融入你的见解,使用户灵活的解读数据,对用户来说极具意义。毕竟,愉悦的体验才能使用户记住并反复使用。
4.简单法则
数据可视化是用来告知用户,而非让用户接收不需要的过载信息。作用一名设计者,你的角色就是专注简单,将复杂或者零散的信息变得切实可行,易于理解,极具意义和更人性化的信息。记住,越简单,用户才能越明白。
5.避免重复发明轮子
试试在可视化中键入当前行为与你的理解。会让你的设计被广泛的用户群体接受。饼图被人们广泛使用的原因在于:人们理解它表达的含义。这是一种天生优雅的可视化设计,因它有更大的影响力,且能使人们一看即懂。
一种设计驱动的方法
好的数据可视化不仅仅是设计上的杰作,也是帮助人们去解读之前无法触及的内容的一种极具价值的工具,并使这些内容赋有意义和指导性。随着越来越多的公司开始意识到数据的潜在能量,在将一些不清晰的事变成能帮助人们的事物面前,设计将发挥更大的作用。其关键就在于采用用户第一,专注简单的设计驱动方法,创造永不停息的愉悦体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04