
机器学习-大数据的关键_数据分析师
Splunk的用户大会已经接近尾声。三天时间的会议里,共进行了160多个主题研讨,涵盖了从安全、运营到商业智能,甚至包括物联网,会议中一遍又一遍出现相同的中心主题:大数据的关键是机器学习。
存储不再是一个问题。从运行Hadoop兼容节点的专用存储硬件,到数百台使用普通硬盘的计算机组成的集群,毫无疑问,我们具备了处理这类存储问题的能力。另一方面,像Splunk这样的分析和可视化工具也应运而生。如果你知道你要找什么,这些工具可以很快给你所需要的答案。
但是,你应该找什么呢?对于绝大多数的基层供应商来说,问题的答案就在机器学习里面。无论你是在谈论网络流量、用户行为,或者是消费趋势,这都不要紧,你能真正洞察你所监控的东西的方式是找到数据中的模式和相关性。虽然人类操作员可以通过试错法蹒跚而行,但他们相信,可以通过训练计算机来得到结果,并且速度更快和不带偏见。
当然,这并不是说人类已经过时。必须有人来确认相关性不只是种巧合,并找出对信息采取行动的方法。而这也正是前面所提到的可视化工具可以发挥作用的地方。
大数据和机器学习的主要用例
虽然大数据的潜力几乎是无限的,但不可避免的是一或两个行业会在前面带头冲锋。如果再过一年问我,我可能会说不同的话,但现在的预测是,无论是安全还是运营,都会处在第一线。
只要比那些只收现金的咖啡亭大的公司,都需要考虑信息的安全性。即使他们没有知识产权可言,但他们都在处理一些敏感信息,如信用卡号码。有方法可以可靠地检测和阻止那些正在发生的违约行为,对公司的长期成功是至关重要的。基于机器学习的安全产品承诺提供这种能力,并且它的易用性接近“交钥匙工程的水准。
与此类似,运营分析将会流行起来。现在你就可以买到工具来监视你的网络,解码数据包,或向你精确呈现一个给定的REST调用是如何经过服务器的中间层一路到达数据库或文件系统的,然后把它和一周,一个月或一年以前的行为做对比。这不是未来的概念,而是今天现成的东西,并可以在一周内运行起来。
其它领域的研究将会继续下去,但不会有如此快的速度。欺诈检测是非常重要的,但大多数公司会依靠他们的金融机构来设计和实施必要的控制措施。我预计在这方面不会有太多商业化的、现成的产品。
商业智能是另一个会看到大量金钱投入的研究领域。但可口可乐与百事可乐公司用来确定下一个流行口味的算法,看起来一点也不像通用和福特公司用来预测每种尺寸的车型会有多少量的算法。如此类推,商业化产品对大数据的运用目前可能会主要局限于基本的分析和可视化方面。
其他的会议思考
总而言之,Splunk举办了一次非常好的会议。一切都组织得很好,每个人,从初学者到最高级的数据挖掘工程师,都会有相关的议题研讨。我唯一的抱怨是,议题研讨没有记录。因为有这么多的内容,人们势必会因为冲突错过一两个重要的议题。
即使你对Splunk本身不感兴趣,但对大数据、机器学习以及相关主题感兴趣的任何人来说,这都是一次重要的会议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01