京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【连载一】spss中做相关分析
相关分析是很基础的一种分析方法,接触spss的同学很快就会学习到想相关分析。虽然他很基础,但是在做很多高级分析之前,都要进行相关分析。这篇问文章就系统的和大家分享一下spss里如何做相关分析。
在spss中相关分析主要分为三大类,分别是双变量相关分析,偏相关分析和距离相关分析。
1、双变量相关分析主要研究两个变量数量之间的相关性。它又分为pearson相关分析,kendall相关分析,kendall等级相关分析,还有spearmen等级相关分析这四种。
Pearson相关分析是应用最最多的一种分析方法,它适用于评价两个连续变量十是否相关,常见的例子有分析体重和身高的相关性啊,分析睡眠时间和学习时间的相关性啊等等。这两个例子里变量都是连续性的,所以用pearson相关分析。主要分析过程如下,选择菜单分析——相关——双变量,打开双变量主对话框,把要分析的变量选入变量框(两个以上哈),确定就可以了。很简单。结果也很容易看,主要看两个指标,一个是p值,就是sig(不要笑,虽然很简单的一个点,可是就是有好多人都搞不清楚),p值小于0.5,就认为两个变量显著相关,p值小于0.01,就认为极其显著。另一个是相关系数,相关系数为正就是正相关,为负就是负相关,相关系数的绝对值越接近一就说明相关性越强。一般认为0.7以上是强相关。注意,这里有一个事情很多人都搞不清楚,要特别说一下哈,p值很小,同时相关系数也很小这种情况是存在的。这说明两个变量显著相关,但是是弱相关,也就是说p值和相关系数没什么关系,两个的取值互相不影响,如果出现p值和相关系数都很小的情况,不要太紧张,很正常哈。
Kendall相关分析主要用来反映两个有序分类变量的一致性,有序分类变量就是等级变量,1.2.3.这类递进的,时间序列也是有序分类变量,无序分类则是性别啊,是否成年啊,这种的。总之kendall相关分析的使用范围是用来分析两个有序分类变量,举个例子,如果把睡眠时间和学习时间都用等级表示出来(比如一小时一个等级),那这个分析就可以用kendall,它的结果观察方法和pearson一样,就不在重复了。
Kendall等级相关分析所适用的情况是另一种,它操作方法和上一个kendall的例子一样,但是用于等级资料,是要加权的。举个例子,比如我想分析一下一个人每天吃不吃水果和这个人的营养状况的相关性,那就要用到等级分析。这个例子和上边的例子的区别很明显,上边都是数值型的变量,而这个例子中是要自己定义的,比如我定义吃水果是1,不吃是2,定义营养状况为差,中,强,分别对应1,2,3。然后我想分析的话我就定义变量水果食用情况,营养状况,计数,用计数进行加权后做kendall分析,当然可以直接输入一大堆数据,如果不嫌麻烦的话。结果分析方法同上。
Spearman等级相关分析和kendall有一点点类似,适用于分析含有等级资料的变量,举个例子,分析努力程度和学习成绩之间的关系,其中努力程度是要分等级的资料,学习成绩则是数值型的,这时候就要用spearman,结果分析同上。
2、偏相关分析和双变量相关分析的不同之处在于偏相关分析要考虑除却分析的变量以外是否有其他变量影响到这两个变量。比如,举个例子,比如我现在有一个运动员的身高,肺活量,和短跑成绩。我想要分析身高和短跑成绩的相关性的话,我就要使用偏相关分析,因为肺活量也影响到了身高和短跑成绩,我得剔除这个变量的影响,所以呢,我就不用双变量,而是使用偏相关。我打开菜单分析——相关——偏相关,打开主面板,把身高和短跑成绩选到变量里,把肺活量选到控制里边,然后点确定。输出表的观察方式和上边一样,不在重复。在输出表里,它会显示出没有控制变量的时候的相关系数和有控制变量的时候的相关系数,如果数据恰当的话,你会观察到一个相当有趣的现象,不控制肺活量的时候,身高和短跑成绩是相关的,控制的时候,身高和短跑成绩就不相关了。So,明白偏相关的作用了吗?
需要特别说明一下的是,偏相关分析并不像双变量那样有四种方法可以供你选择,它的适用范围一般是一些数值型的变量,一些你能判断到底有没有关系的变量,你也许应该先用双变量两两测出自变量是否相关,然后再考虑要不要用偏相关,而且假如你的偏相关的变量是等级资料,结果有可能会很尴尬。
3、距离相关分析是一个初学者不那么常用到的分析,不过为了完整性,本文还是列了出来。它用来计算个案或变量之间距离相异性或相似性度量,和其他模块,比如因子分析,聚类分析,多维尺度分析一起使用以助于分析复合数据集。它也分为两种,变量距离相关分析,个案距离相关分析。
我们还是使用一个例子来进行学习。比如我们想要分析学生的身高,肺活量,短跑成绩这三个变量的亲密度,我们选择菜单分析——相关——距离,打开主面板,在变量列表选入这三个变量,下边的计算距离选择变量间,在下边的标准选择相似性,单击度量,打开度量面板。这个面板里边默认为区间,pearson相关性。另外还有一个二分类,我们在这里不讨论二分类到底是干嘛的(有兴趣的同学可以自己去试试),就按默认的,点继续,点确定。然后我们观察输出窗口,他会输出一个近似矩阵,由于我们上边选的是相似性,所以这个矩阵里边的值越接近1,就说明对应的两个变量距离越近,就是说越亲近,相关性越强。如果选的是不相似性,那么得出的数值越小距离越近,最小是0,最大值很可能超过1,超过了也不要紧张。它比双变量做出来的结果要直接,它不考虑p值,所以两个分析还是不一样的哈。个案距离相关分析和这个类似,只是把计算距离选成了个案,假如你只想分析其中几个个案,你需要在数据——选择个案,里边选择一下你的个案。然后做距离相关分析,其他的默认哈。
相关分析的内容基本上就这些了。都是很浅显的一些内容,主要的学习内容分为两方面,一个是怎么看p值和相关系数,一个是不同的相关分析方法在适用范围上到底有什么不同。我呢也没有从原理方面讲为什么这个方法用于这种情况这样讲,只是简单的罗列了一下怎么用,第一希望大家看过以后能有所收益,第二大家有什么想法,或者觉得我说的有什么不对欢迎和我交流哈CDA 数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17