京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不懂数据挖掘,内容营销等于零
随着内容营销市场份额的持续扩大,我们听到了很多关于内容营销的话题,说内容营销与传统广告多么不同。随着这些年广告的发展,企业和品牌依旧面临着“如何接触到目标客户”的困扰。消费者知道他们每天都被各种传统广告包围着,这些广告有些会被客户关注,有些则被忽视。在广告的发展历史中,没有消费者打开他们的数字设备是为了寻找广告,通过广告来接触一个品牌的。他们所寻找的,永远是精彩的内容。这就是内容营销的核心;企业和品牌可以在目标消费者已经习惯接触的内容中与消费者沟通。

这里有一个案例可以说明内容营销与传统广告的不同,尽管,通常来说,在广告及时性上来说,内容营销的广告要远远落后于传统展示广告。通过内容营销平台的帮助,创造营销内容已经不再是挑战。事实上,在内容营销工具的帮助下我们已经可以简单快捷的创造内容营销的软文,我们不再为了探寻适合消费者的营销内容而被压得喘不过气来。现在,我们可以很方便的区分出内容营销和传统广告。在传统广告的时代,在尽可能多的页面展示尽可能多的Banner广告似乎就是很好的方法了。(提醒:这其实不是一个好主意)
通过更多展示来促进效果的传统广告也开始意识到,要取得更好的广告效果,并不是更多的展示广告,而是更多能接触到目标客户的广告。在当今数字生活环境中,内容营销者拓宽他们的思维比创造内容更重要。他们需要用独特的策略来营造易于受众接受的氛围,以及收集所有受众的反应到分析漏斗中。
总之,品牌需要采取更多的数据挖掘的方法来开展内容营销。内容营销也许看上去和数字广告很不同,但是他的后台却需要像当今的智能广告投放(programmatic ad,也称程序化购买,一种新兴广告技术,由电脑根据大数据来智能的为客户选择网络广告投放)一样,才能使品牌在数字时代取得成功。这意味着需要获取智能广告技术所需要的海量消费者数据,从而来理解和预测消费者行为,再利用智能广告技术,就可以用更相关的、有意义的方式来瞄准目标客户。
数据挖掘方法的使用,是更好的接触消费者,带动整个内容营销行业到达下一个时代的关键。我们有内容,而且数据就在我们的指尖。那么,对于内容营销者来说下一步就是像显示广告那样利用数据。智能广告投放平台快速的筛选数据,深入洞察消费者行为,从而实时锁定目标客户。如果内容营销者能够充分利用智能广告投放平台,那么其精准营销的能力和实时传递内容的能力都将得到很大提升。这样就能确保目标客户,在正确的时间,正确的地点看到和他们最相关、最有趣和最具冲击力的营销内容。数字广告界熟知这种方式,也从中获取了大量回报。现在,想想智能广告投放技术所能达到的效率,你就会感到兴奋。
智能广告投放技术,应用好时,能够提供有效的解决方案,帮助营销者在顾客购买过程中的每一步提供给消费者相关和有用的信息。这种技术在内容营销中是非常有价值的。这同时需要智能广告投放平台自身也更完善,从而更好的利用数据在任何给定的时间锁定客户的位置。内容营销者通常从客户是否第一次浏览软文,是否表现出对品牌的兴趣,是否最近购买过商品来发现用户需求。现在,打破内容营销者这种静态的思维方式至关重要,不是从内容营销者的既有角度出发,而是从顾客的角度出发,通过顾客的全方位数据分析,去发现顾客需求和顾客感兴趣的内容。
内容营销从大数据数字广告中学习如何利用智能广告投放技术是一件事,内容营销的内容到底如何呈现则是另外一件事。智能广告投放技术能够有效帮助数字广告发现展示地点是因为网络上存在大量可利用的广告位置。对于定制的营销内容,每一条我们都想尽办法使其与消费者相关,对消费者有用,如何能让内容更有影响力,然后我们还要思考用何种技术方案才能让智能广告投放技术将营销内容有效投递。
为了内容营销的成功与繁荣,我们需要翻越内容营销的高山,以及使用数据挖掘技术更好的传递内容到那些希望看到该内容的用户,而且还要在正确的时间传递给他们。为了使之发生,我们必须利用智能广告投放技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29