
大数据行业六大核心发展趋势
作为一个全新的产业,大数据仍然处于快速发展的初期,这是一个快速发展的领域,每时每刻都在产生新的变化。从整体发展角度评估,大数据行业的未来将呈现以下六个核心发展趋势。
1应用层级爆发出强大的增长力及机遇
大数据并不在“大”,而在于“用”。对于很多行业而言,如何有效应用这些大规模数据、挖掘出更大的价值是成为赢得竞争的关键。
因此,大数据的应用成为未来十年产业发展的核心趋势,大数据产业链条的应用层级也成为发展机会最大的投资领域。
大数据时代的核心应用方向主要包括智慧城市、旅游、医疗健康、教育、电子商务以及游戏、社交媒体等,移动互联网是未来10年IT产业的下一个金矿。目前,国内一些领先的互联网企业,包括新浪、腾讯、阿里巴巴等,已开始了实质性的探索。
比如,阿里、新浪联姻之后,新浪微博近期推出重磅作品:“Page页面”,通过微博信息流,微博用户可以通过“关注”、“赞”、“点评”与之产生互动关系。
新浪微博面临的商业化难题是众所周知的,而阿里巴巴和微博之间的战略协同,将打造出一个颇具想象力的横跨社交领域和电商领域的生活平台。
2大数据分析领域快速发展
数据蕴藏价值,但是数据的价值需要用IT技术去发现、去探索,数据的积累并不能够代表其价值的多少。随着产业应用层级的快速发展,如何发现数据中的价值已经成为市场及企业用户密切关注的方向,因此大数据分析领域也将获得快速的发展。
而随着大数据行业IT基础设施的不断完善,大数据分析技术将迎来快速发展,不同的挖掘技术,挖掘方法将是人们未来比较重视的领域,因为,这个领域直接关系到数据价值的最终体现方式。
3大数据与云计算的关系愈加密切
如果再找一个可以跟大数据并驾齐驱的IT热词,云计算无疑是跟大数据关系非常大的一个词语。很多人在提到大数据的时候总会想到云计算,二者还是有很多不同的,一句话来解释二者:云计算是硬件资源的虚拟化,大数据则是海量数据的高效处理。
大数据的4V特点对存储、传输和处理都提出了巨大的挑战,这个问题就需要新的技术来解决,云计算是大数据的处理器的最佳平台,未来,这种趋势的发展将越来越让二者的关系更紧密。
例如亚马逊利用云的数据BI的托管服务,谷歌BigQuery中的数据分析服务,IBM的Bluemix云平台等等,这些都是基于云的大数据分析平台。
随着大数据行业的发展,尤其是数据量的爆炸式增长,分布式存储技术将作为未来解决大数据存储的重要技术,并实现从Scale-up向Scale-out的转移。
分布式存储系统将数据分散存储在多台独立的设备上,这就解决了传统存储方式的存储性能瓶颈问题。随着大数据量的逐渐增大,可以通过分布式的处理方式把应用复杂分散到分布式系统的各个节点上,分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
4安全和隐私问题越来越受到重视
数据价值对于企业来说是非常重要的,但是同样也有阻碍着大数据发展的一些因素,在这些因素中,隐私问题无疑是困扰大数据发展的一个非常重要的要素。
一些我们之前看似并不重要的数据信息,在大数据中心,许多这样的信息就很可能轻松了解一个人的近期情况,从而造成了个人隐私问题。而且如今随着大数据的发展,个人隐私越来越难以保护。有可能出现利用数据犯罪的情况,当然关于大数据隐私方面的法律法规并不全,还需要有专门的法规来为大数据的发展扫除障碍。
随着数据价值的越来越重要,大数据的安全稳定也将会逐渐被重视,大数据不断增长,无论对数据存储的物理安全还是对数据的管理方式都要求越来越高,从而对数据的多副本与容灾机制提出更高的要求。
5大数据分享变得尤为重要
对于大数据来说,未来,可能将不同的行业更加细分,针对不同的行业有着不同的分析技术。但是同样对于大数据来说,数据的多少虽然不意味着价值更高,但是更多的数据无疑更有助于一个行业的分析价值的发现。
例如,对于医疗行业,如果每一个医院对自己的数据进行分析,相信也能够获得相应的价值,但是如果想获得更多的更大的价值,那么就需要全国,甚至全世界的医疗信息共享,这样才能够通过平台进行分析,获取更大的价值。
所以,为了数据可能会呈现一种共享的趋势,数据联盟可能出现。
6中国将成为全球大数据产业最重要的市场
中国在未来将可能成为大数据最重要的市场,中国拥有世界上五分之一的人口,同时中国的发展正在处于快速的上升期。
中国产生的数据将是巨大的,而巨大的数据对大数据的发展将起到促进的作用,而大数据在中国市场的发展也将领先。总之,大数据将给中国的市场带来更广泛的发展机会,对于中国来说这个市场是非常有前景的,是值得大家重视的一个市场。
各行业的客户和各行业的开发商也应该在大数据市场抓住机会,借助自己的优势创造更多的价值,在未来激烈的市场竞争中借助大数据走的更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07