
大数据真是“大”吗? 并不见得
数据并不只是因为成为了“大数据”才有了价值,“小数据”就没有价值吗?而是只要是数据都是有价值的。
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯(见百度百科)。业界将其归纳为4“V”—Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。大数据的“大”,目前应该是指与计算机为代表的信息设备诞生以来这70年所产生的信息数据相比是“大”了,即与历史产生的信息数据相比是“巨量”了。但若我们将其放在纵、横两个维度上去比,大数据还“大”吗?
从数据产生的过程看。目前的大数据(从TB级别,跃升到了PB级别)与以往的MB、GB级别相比确实大了,但与未来的EB、ZB级别相比还只能称之为“小数据”。从数据以外方面看。首先与同为IT概念的IP地址的IPv6相比,即使目前定义数据量最大计量单位DB,与其相比还差近2个级别。再与信息(在此信息即为数据,下同)共同构成世界的物质、能量三要素的其他二要素物质、能量相比,地球的质量约为5.98×1027克,世界探明煤炭资源可采储量约为9.84×1017克,10TB大约等于一个人脑的存储量,全球70亿人的脑存储量约为6.52×270Byte,相对应来看目前所说的大数据也并不“大”。但我们也还没有称IPv6为“大IP地址”,没有称物质、能量为“大物质”、“大能量”等等。
在物质世界有“大”就有“小”,如物质就计量单位从小到大有克、十克、百克、千克……,从大到小有克、分克、厘克、毫克……。而数据,目前计量单位只能从小到大有bit、Byte、KB、MB……,但却不能从大到小。而我们知道数据计量单位每缩小一个级别,则数据量就可增加1024即210倍。
物质有限可分还是无限可分虽然还将争论下去,但就当今理论和实践的发展看物质是可分的,就物质的计量单位而言是具有双向性的(能大能小)。而数据似乎是不可分的,就数据的计量单位而言似乎是单向性的(只能大)。
若将物质资源的计量单位定为“克”,则煤炭储量的数值可与数据资源数值的EB对应;而若将物质资源的计量单位定为“毫克”,则煤炭储量的数值就可与数据资源数值的ZB对应。就当今理论和实践的发展看物质是可分的,则物质资源的数值相较数据资源就计量单位而言似乎是无限大的,数据资源的“大”就更待商榷了。
人类利用物质和能量资源的过程是:自然产生物质和能量资源(软件),人类发明工具开发物质和能量资源(硬件),人类改进工艺利用物质和能量资源。即先有物质和能量资源,再有开发物质和能量资源的硬、软件工具。
而人类利用数据资源的过程是:人类发明了计算机等信息设备来承载数据资源(硬件),人类设计了软件来处理数据资源(软件),数据才向人类展现出其资源的特性(资源)。即先有了开发数据资源的硬、软件工具,再有数据资源。
物质和能量资源的产生经过了亿万年自然的进化,其产生与人类没有关系,即不已人类的意志而转移。而数据资源的产生只有短短的几十年时间(该数据资源是指计算机诞生以后产生的信息数据资源),其产生与人类有直接关系,即其会随着人类的意志而转移。这种根本性的不同,对人类意味着什么?目前我们不得而知。物质不灭定律(又称“质量守恒定律”)告诉我们“物质虽然能够变化,但不能消灭或凭空产生”。数据是否也是不灭的,数据又将如何变化呢?这些,我们都是无法回答的。
目前,“大数据”的核心只是改变了人类以前的理解,即承载数据的硬件有价值,处理数据的软件有价值,而数据本身却不具有价值。由此,呈现了数据本身也是具有价值这一理念。
“大数据”一词,目前还只是IT界自说自话的技术术语,并没有体现出其价值所在,百姓并不明白它有什么用处。其实还不如称“大数据”为“数据资源”或“资源数据”。以突出“资源”一词所蕴含的价值,以体现数据的资源特性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08