
大数据真是“大”吗? 并不见得
数据并不只是因为成为了“大数据”才有了价值,“小数据”就没有价值吗?而是只要是数据都是有价值的。
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯(见百度百科)。业界将其归纳为4“V”—Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。大数据的“大”,目前应该是指与计算机为代表的信息设备诞生以来这70年所产生的信息数据相比是“大”了,即与历史产生的信息数据相比是“巨量”了。但若我们将其放在纵、横两个维度上去比,大数据还“大”吗?
从数据产生的过程看。目前的大数据(从TB级别,跃升到了PB级别)与以往的MB、GB级别相比确实大了,但与未来的EB、ZB级别相比还只能称之为“小数据”。从数据以外方面看。首先与同为IT概念的IP地址的IPv6相比,即使目前定义数据量最大计量单位DB,与其相比还差近2个级别。再与信息(在此信息即为数据,下同)共同构成世界的物质、能量三要素的其他二要素物质、能量相比,地球的质量约为5.98×1027克,世界探明煤炭资源可采储量约为9.84×1017克,10TB大约等于一个人脑的存储量,全球70亿人的脑存储量约为6.52×270Byte,相对应来看目前所说的大数据也并不“大”。但我们也还没有称IPv6为“大IP地址”,没有称物质、能量为“大物质”、“大能量”等等。
在物质世界有“大”就有“小”,如物质就计量单位从小到大有克、十克、百克、千克……,从大到小有克、分克、厘克、毫克……。而数据,目前计量单位只能从小到大有bit、Byte、KB、MB……,但却不能从大到小。而我们知道数据计量单位每缩小一个级别,则数据量就可增加1024即210倍。
物质有限可分还是无限可分虽然还将争论下去,但就当今理论和实践的发展看物质是可分的,就物质的计量单位而言是具有双向性的(能大能小)。而数据似乎是不可分的,就数据的计量单位而言似乎是单向性的(只能大)。
若将物质资源的计量单位定为“克”,则煤炭储量的数值可与数据资源数值的EB对应;而若将物质资源的计量单位定为“毫克”,则煤炭储量的数值就可与数据资源数值的ZB对应。就当今理论和实践的发展看物质是可分的,则物质资源的数值相较数据资源就计量单位而言似乎是无限大的,数据资源的“大”就更待商榷了。
人类利用物质和能量资源的过程是:自然产生物质和能量资源(软件),人类发明工具开发物质和能量资源(硬件),人类改进工艺利用物质和能量资源。即先有物质和能量资源,再有开发物质和能量资源的硬、软件工具。
而人类利用数据资源的过程是:人类发明了计算机等信息设备来承载数据资源(硬件),人类设计了软件来处理数据资源(软件),数据才向人类展现出其资源的特性(资源)。即先有了开发数据资源的硬、软件工具,再有数据资源。
物质和能量资源的产生经过了亿万年自然的进化,其产生与人类没有关系,即不已人类的意志而转移。而数据资源的产生只有短短的几十年时间(该数据资源是指计算机诞生以后产生的信息数据资源),其产生与人类有直接关系,即其会随着人类的意志而转移。这种根本性的不同,对人类意味着什么?目前我们不得而知。物质不灭定律(又称“质量守恒定律”)告诉我们“物质虽然能够变化,但不能消灭或凭空产生”。数据是否也是不灭的,数据又将如何变化呢?这些,我们都是无法回答的。
目前,“大数据”的核心只是改变了人类以前的理解,即承载数据的硬件有价值,处理数据的软件有价值,而数据本身却不具有价值。由此,呈现了数据本身也是具有价值这一理念。
“大数据”一词,目前还只是IT界自说自话的技术术语,并没有体现出其价值所在,百姓并不明白它有什么用处。其实还不如称“大数据”为“数据资源”或“资源数据”。以突出“资源”一词所蕴含的价值,以体现数据的资源特性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22