京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据真是“大”吗? 并不见得
数据并不只是因为成为了“大数据”才有了价值,“小数据”就没有价值吗?而是只要是数据都是有价值的。
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯(见百度百科)。业界将其归纳为4“V”—Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。大数据的“大”,目前应该是指与计算机为代表的信息设备诞生以来这70年所产生的信息数据相比是“大”了,即与历史产生的信息数据相比是“巨量”了。但若我们将其放在纵、横两个维度上去比,大数据还“大”吗?
从数据产生的过程看。目前的大数据(从TB级别,跃升到了PB级别)与以往的MB、GB级别相比确实大了,但与未来的EB、ZB级别相比还只能称之为“小数据”。从数据以外方面看。首先与同为IT概念的IP地址的IPv6相比,即使目前定义数据量最大计量单位DB,与其相比还差近2个级别。再与信息(在此信息即为数据,下同)共同构成世界的物质、能量三要素的其他二要素物质、能量相比,地球的质量约为5.98×1027克,世界探明煤炭资源可采储量约为9.84×1017克,10TB大约等于一个人脑的存储量,全球70亿人的脑存储量约为6.52×270Byte,相对应来看目前所说的大数据也并不“大”。但我们也还没有称IPv6为“大IP地址”,没有称物质、能量为“大物质”、“大能量”等等。
在物质世界有“大”就有“小”,如物质就计量单位从小到大有克、十克、百克、千克……,从大到小有克、分克、厘克、毫克……。而数据,目前计量单位只能从小到大有bit、Byte、KB、MB……,但却不能从大到小。而我们知道数据计量单位每缩小一个级别,则数据量就可增加1024即210倍。
物质有限可分还是无限可分虽然还将争论下去,但就当今理论和实践的发展看物质是可分的,就物质的计量单位而言是具有双向性的(能大能小)。而数据似乎是不可分的,就数据的计量单位而言似乎是单向性的(只能大)。
若将物质资源的计量单位定为“克”,则煤炭储量的数值可与数据资源数值的EB对应;而若将物质资源的计量单位定为“毫克”,则煤炭储量的数值就可与数据资源数值的ZB对应。就当今理论和实践的发展看物质是可分的,则物质资源的数值相较数据资源就计量单位而言似乎是无限大的,数据资源的“大”就更待商榷了。
人类利用物质和能量资源的过程是:自然产生物质和能量资源(软件),人类发明工具开发物质和能量资源(硬件),人类改进工艺利用物质和能量资源。即先有物质和能量资源,再有开发物质和能量资源的硬、软件工具。
而人类利用数据资源的过程是:人类发明了计算机等信息设备来承载数据资源(硬件),人类设计了软件来处理数据资源(软件),数据才向人类展现出其资源的特性(资源)。即先有了开发数据资源的硬、软件工具,再有数据资源。
物质和能量资源的产生经过了亿万年自然的进化,其产生与人类没有关系,即不已人类的意志而转移。而数据资源的产生只有短短的几十年时间(该数据资源是指计算机诞生以后产生的信息数据资源),其产生与人类有直接关系,即其会随着人类的意志而转移。这种根本性的不同,对人类意味着什么?目前我们不得而知。物质不灭定律(又称“质量守恒定律”)告诉我们“物质虽然能够变化,但不能消灭或凭空产生”。数据是否也是不灭的,数据又将如何变化呢?这些,我们都是无法回答的。
目前,“大数据”的核心只是改变了人类以前的理解,即承载数据的硬件有价值,处理数据的软件有价值,而数据本身却不具有价值。由此,呈现了数据本身也是具有价值这一理念。
“大数据”一词,目前还只是IT界自说自话的技术术语,并没有体现出其价值所在,百姓并不明白它有什么用处。其实还不如称“大数据”为“数据资源”或“资源数据”。以突出“资源”一词所蕴含的价值,以体现数据的资源特性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08