京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何做好数据分析的第一步,数据埋点呢
做产品的同学在产品上线后经常离不开一个词,数据分析。那么要如何进行数据分析呢?不妨先问自己这么几个问题。
你要分析什么问题?是找问题还是验证?关于这些问题你需要哪些数据?这些数据从哪里来?
要怎么解决这些问题呢?答案是数据埋点。首先通过产品定位及目标来确定自己需要哪些数据,其次通过在产品各个流程环节中设置数据埋点,最后,当用户使用产品时,后台就能源源不断地接收到数据了。
那么,问题又来了。如何做好数据分析的第一步,数据埋点呢?还是从三个问题来回答
1.数据埋点是什么?
初级的数据埋点:在产品流程关键部位植相关统计代码,用来追踪每次用户的行为,统计关键流程的使用程度。
中级的数据埋点:在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为。
高级的数据埋点:与研发及数据分析师团队合作,通过数据埋点还原出用户画像及用户行为,建立数据分析后台,通过数据分析、优化产品。
2.为什么要做数据埋点?
一个简单的逻辑:你不做数据埋点,你就做不了数据分析。你不做数据分析,你就会不知道产品上线情况。你不知道产品上线情况,你产品就会做差。你产品做差,你的业绩就会不好。你业绩不好你就会被辞,你被辞就会没钱。你没钱就会去睡马路。你睡马路你就可能会被车撞,你被车撞就会…
所以为了不被车撞,一定要做好数据埋点!
3.怎么做好数据埋点?
(1)数据埋点的内容
数据埋点可以分为产品内部埋点和市场埋点,内部埋点通常分析用户使用产品的行为及流程,提升用户体验。市场埋点分析该产品在市场上的表现及用户使用场景,如产品在不同市场和地域的下载量,不同地域人群使用时间等等。
产品流程通常分为主干流程和分支流程,所以相应的数据埋点可以分为主干埋点和分支埋点,数据埋点通常不会一步搞定,在产品的第一次上线时通常会埋以下几个点:PC&Web端会统计产品的PV/UV,注册量,主要流程页面之间的转化率、日活人数等等。而移动端还要统计产品在Appstore,各大安卓市场的下载量。
第二次埋点会根据产品目标及上线后的问题进行分析。比如,当你发现产品首页的UV很高,注册量却非常低,你就需要分析出用户在首页的行为,如30%的用户退出了产品,60%的用户进入了注册页,但只有1%的用户注册了该产品。这也就意味着,注册流程可能出现了问题,需要进一步细化注册各个流程,增加数据埋点,分析各个流程之间的转化率,找到产品出现的问题并解决。
具体到自己的产品,怎么数据埋点,就需要根据自己产品的任务流及产品目标来设计。这是一个由粗到细,优化迭代的过程。
(2)分析方法
任务流程分析法:根据产品设计的任务流,在任务流开始和结束处埋点,分析用户处理任务的情况。
页面转化分析法:统计相关页面的转化率及页面元素点击率,分析用户行为。
情景分析法:列出各种用户使用场景,自己或多人体验不同场景下产品的使用流程,寻找依据设立数据埋点,通过数据反馈验证用户行为。
(3)数据埋点的方式
目前主流的数据埋点方式分为两种:
第一种:自己公司研发在产品中注入代码统计,并搭建起相应的后台查询。第二种:第三方统计工具等。
最后,还是要说,数据埋点是产品数据分析的基础,也是个循序渐进的过程。基础的数据分析并不难,让数据来驱动产品迭代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02