京公网安备 11010802034615号
经营许可证编号:京B2-20210330
媒体应用大数据,先解决三大难题
在大数据时代,互联网是骨骼,大数据则是血液。大数据的核心在于数据,具有海量、高频、在线、实时等特点,但是对于传统媒体来说,在运用大数据的过程中,存在着数据资源不足、数据平台欠缺和缺乏有竞争力的数据产品三大难题,笔者在此提出一些相应的解决办法。

难题一:缺乏充足的数据资源
传 统媒体目前只有数量极少的数据,原因如下:一是自身数据资源太少。对于绝大多数传统媒体来说,其主要数据资源还仅仅是内部的新闻内容数据、历史数据和媒资 数据等,而缺乏用户数据、网络行政数据和政府数据等,导致自身的数据资源量极其有限。二是自身数据多是静态数据,缺乏有效的互动和即时性。三是缺乏用户数 据,传统媒体虽然有一定数量的受众数据,但是由于这些受众数据的频率低且没有经过精准画像,导致自身只有受众而没有真正的用户。
因此,传统媒体首先要想方设法获取足够多的数据资源:一是可以利用自身的政治资源,尽可能地获取网络行政、政府数据等高价值的数据资源;二是建立起自身的用户体系,逐步变受众数据为用户数据;三是尽快把现有静态的存量内容资源转变为动态的、互动的数据资源。
难题二:缺少大数据平台
传统媒体要想真正建立起属于自己的大数据,其前提是必须打造数据充足、技术先进、用户活跃的大数据资源平台,智能生产和传播平台以及用户沉淀平台三大平台。传统媒体在打造大数据平台时,面临三大制约:一是思维和观念陈旧,二是缺乏先进的技术支持,三是需要大量的资金。
当 前,国家提出了国家大数据工程,各地政府正在大力推进智慧城市建设和政府数据开放工程,传统媒体可以积极利用自身的政治优势把三大平台建设纳入政府的智慧 城市建设中,建立起大数据平台和区域内的数据交易平台。这么做的优势在于:一是站在整个区域的大数据发展的基础上;二是可以借助政府智慧城市的建设工程来 解决自身的技术和资金问题;三是可以获取政府的数据资源。
难题三:缺少有竞争力的大数据产品
数据资源的积累和三大平台建设的目的,都是为了开发出具有高商业价值、富有竞争力的大数据产品。传统媒体要想重建商业模式,实现自身的彻底转型,就必须打造出在市场上有高度竞争力的大数据产品。
打 造成功的大数据产品需要注重如下三点:一是以用户需求为导向。在对用户进行精准画像的基础上,利用大数据手段找出用户的痛点和需求,进而基于用户的需求来 开发产品。二是实现业务人员、数据人员和技术人员的“混”。当前,一方面懂业务的不懂技术和数据,懂技术和数据的又不懂业务,另一方面业务、技术和数据人 员相互割裂,甚至互相看不起或不理解,这导致难以有效地开展工作,而要解决这个问题,首要就是要实现他们之间的“混”,即协同办公。三是实现业务、数据和 技术之间的“通”。大数据产品一定是业务、数据和技术三者之间的协同互通,只有三者之间相互理解、相互熟悉、相互帮助,才能真正开发出有竞争力的大数据产 品,在具体运作中,可以设立数据产品经理来解决这个难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08