京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Graveyard模型的spss操作
昨天一位朋友问我Graveyard模型如何操作,我在几年前曾做过这个模型,现在有些遗忘了,先说说Graveyard模型是做什么的?为什么要用Graveyard模型 ?
1、 二维分析方法
先说说一个很好的市场研究方法,那就是二维分析方法,简单的讲就是X和Y的散点图,在市场分析和数据挖掘的过程中大多是有这种方法进入主题进行深度分析的,当然分析或者挖掘的入口大多数是数据的分布;
二维分析方法的难点就在于如何设定X,Y,,也就是X代表什么意思,Y代表什么意思;如何划分区域(一般是mean,但一定要考虑数据的分布,以防木桶原理影响决策)
2、Graveyard模型
对于提示前品牌知名度和提示后品牌知名度之间的内在关系,可以用Graveyard模型描述。它是个两维图,以提示后知名度为 X 轴,提示前知名度为 Y 轴。根据每一品牌的提示前后知名度在这个两维图上描点,每点代表一个品牌。对所有品牌的提示前后知名度进行回归分析,作出回归直线(或曲线)。这条回归直线(或曲线)将品牌分为四种类型:
(1)正常(Normal)品牌,位于回归线周围,提示前后知名度的关系与市场上的平均水平比较一致。
(2)衰退(Graveyard)品牌,位于回归线右下方的品牌,其提示前知名度相对于提示后知名度太低,显现出该品牌被消费者淡忘的趋势。
(3)利基(Niche)品牌,位于回归线左上方的品牌,其提示前知名度相对于提示后知名度较高,这类品牌其品牌认知率虽然相对不高,但其品牌回忆率较高,消费者对其忠诚度较高。
(4)强势品牌,位于回归线右上方的品牌,其提示前后知名度均很高,消费者对其忠诚度甚高,这些品牌大多是市场上的强势品牌。
3、回归线是那条
大多数的描述都是围绕回归线进行的,那么如何才能更好的模拟这条回归线呢?
统计角度:R、F检验值和T检验值
R越接近1,表明方程中X对Y的解释能力越强
F检验是通过方差分析表输出的,通过显著性水平(significant level)检验回归方程的线性关系是否显著,spss默认的是0.05,也就是小于0.05均有意义;
实际角度:可以根据自己收集数据的角度和分析的侧重点进行调整拟合曲线;
4、spss如何实现以上的过程?
step1:在回归分析中找曲线估计,如下图;
step2:选择提示前和提示后的数据分别做X和Y,选择拟合所有的曲线
接下来就是OK,之后大家根据自己的实际问题,拟合出更贴近真实的回归线吧
spss跑出来的图,大家可以复制到PPT中选择图点右键取消组合,再美化一下就OK!
5、模型展示:

6、此图解读,此图来自@Celia聪利(新浪微博)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15