
自学SPSS遇到疑难,如何正确的提问?
学习SPSS统计分析,会经过入门、熟悉掌握、灵活应用等几个阶段,每个阶段都会遇到个性化疑问,在形形色色的疑问前,是不分学习资历长短的。不同的学习者在不同的阶段都可能遇到疑难,有所区分的是不同资历的人看待问题及解决问题的方法完全不同。
要想获得满意的回答,取决于你提问的方法。
1.提问之前
向别人提问实际上是在帮助自己,所以希望你是个愿意思考的人,在提问之前去完成你应该做的,而不是只愿索取,从不付出。
在正式提问前,首先试着读书,从SPSS课本中自己找到答案;再次,建议你在网上搜索关键词,有很多价值网页等着你发现它们;第三,自己动手反复研究;
如果这三件事之后还没有解决疑难,那么你可能需要找精于此道的人咨询了。
2、准确定义问题
周全的思考,准备好你的问题,草率的发问只能得到草率的回答,或者根本得不到任何答案。越表现出在寻求帮助前为解决问题付出的努力,你越能得到实质性的帮助。
反复问自己:我到底遇到了什么问题?是概念?还是操作?
定义SPSS疑难问题,至少包括以下:
(1)你的身份
你是学生?是老师?还是一名职场人士?这些有助于让回答者快速地了解你对SPSS、对统计基础的了解程度,以及需求。
(2)问题所处的环境
你正在完成毕业论文?你是什么行业的?你正在负责哪一方面?比如你是银行业,那么流失率就是经常被考察的问题。如果你正在做调查问卷,那么问卷的设计,量表的数据分析可能是你问题所在的区域。
(3)你分析数据的目的
数据分析的目的是什么?验证、预测还是得到模型。例如要对客户进行分类,以提高客户服务的针对性,那么可能涉及到SPSS聚类分析的相关问题。
(4)数据概括
原始数据样本量规模,变量是什么类型的,如果可以,是不是可以截图观看。对数据的了解程度,间接影响到选择何种分析方法。比如你的研究对象是二分类因变量,那可能涉及的是logistic回归的相关问题。
(5)你正在使用什么方法
比如你正在做论文,用的是因子分析,回答者会快速定位到因子分析可能会遇到的问题上。
(6)你想得到哪种帮助
求资料?求指导?还是请求动手操作,回答者会根据你的需求来计划如何回答这个问题,需要多少时间。比如资料,他可能只需要发一份邮件,但如果是动手操作,那可能需要额外预留更多的时间。
3、如何提问?
你在想,小兵是不是太矫情了,找你咨询是看得起你,问一个问题要这么麻烦吗?
年龄增长之后,时间成了最宝贵的资源。答疑需要从工作和生活中抽出时间,而且经常被一大堆问题淹没,所以不得不过滤掉一些问题,特别是那些没头没尾随意发问的情况。所以说,提问的技巧同样很重要。
(1)选对地方找对人
学习SPSS,我一直推荐原人大经济论坛SPSS专版,在哪里你可以获得大量资料,同时可以发帖提问获得帮助。
除了大的平台,你也可以找熟悉SPSS统计分析的人,比如电子书的作者小兵,个性化的问题适合一对一的交流讨论。
(2)恰当的时间
找别人帮忙,尽可能考虑对方的时间。比如上班时间,最好是留言,而不是直接发问。选择时间相对充足的下班时段、周末时段会更容易获得及时的反馈。
(3)用辞贴切,语法正确,拼写无误
粗心的写作者通常也是马虎的思考者。 回答粗心大意者的问题很不值得,我们宁愿把时间耗在别处。 更直接的说,如果你的提问写得乱七八糟,你的问题很有可能被忽视。
(4)精确描述,信息量大
按照“定义问题”准备好你的问题,依次进行罗列,准确的描述你的身份,问题的环境和目的,如果有可能,告诉对方数据规模,变量类型,以及你已经尝试了哪些统计分析方法,最后一定要说明你的需求。
(5)客气谦逊
整个过程不要显得太着急,记得时刻保持稳妥的节奏和风度。
4.找不到答案怎么办?
如果仍得不到答案,请不要以为我们忽略了你。有时只是看到你问题的人不知道答案罢了。没有回应不代表你被忽视,虽然不可否认这种差别很难区分。
回过头再去体会问题是不是描述的足够清楚,保证对方能看懂,或者尝试自己来解决。总之,即时最终没能得到答案,也要保持风度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18