
自学SPSS遇到疑难,如何正确的提问?
学习SPSS统计分析,会经过入门、熟悉掌握、灵活应用等几个阶段,每个阶段都会遇到个性化疑问,在形形色色的疑问前,是不分学习资历长短的。不同的学习者在不同的阶段都可能遇到疑难,有所区分的是不同资历的人看待问题及解决问题的方法完全不同。
要想获得满意的回答,取决于你提问的方法。
1.提问之前
向别人提问实际上是在帮助自己,所以希望你是个愿意思考的人,在提问之前去完成你应该做的,而不是只愿索取,从不付出。
在正式提问前,首先试着读书,从SPSS课本中自己找到答案;再次,建议你在网上搜索关键词,有很多价值网页等着你发现它们;第三,自己动手反复研究;
如果这三件事之后还没有解决疑难,那么你可能需要找精于此道的人咨询了。
2、准确定义问题
周全的思考,准备好你的问题,草率的发问只能得到草率的回答,或者根本得不到任何答案。越表现出在寻求帮助前为解决问题付出的努力,你越能得到实质性的帮助。
反复问自己:我到底遇到了什么问题?是概念?还是操作?
定义SPSS疑难问题,至少包括以下:
(1)你的身份
你是学生?是老师?还是一名职场人士?这些有助于让回答者快速地了解你对SPSS、对统计基础的了解程度,以及需求。
(2)问题所处的环境
你正在完成毕业论文?你是什么行业的?你正在负责哪一方面?比如你是银行业,那么流失率就是经常被考察的问题。如果你正在做调查问卷,那么问卷的设计,量表的数据分析可能是你问题所在的区域。
(3)你分析数据的目的
数据分析的目的是什么?验证、预测还是得到模型。例如要对客户进行分类,以提高客户服务的针对性,那么可能涉及到SPSS聚类分析的相关问题。
(4)数据概括
原始数据样本量规模,变量是什么类型的,如果可以,是不是可以截图观看。对数据的了解程度,间接影响到选择何种分析方法。比如你的研究对象是二分类因变量,那可能涉及的是logistic回归的相关问题。
(5)你正在使用什么方法
比如你正在做论文,用的是因子分析,回答者会快速定位到因子分析可能会遇到的问题上。
(6)你想得到哪种帮助
求资料?求指导?还是请求动手操作,回答者会根据你的需求来计划如何回答这个问题,需要多少时间。比如资料,他可能只需要发一份邮件,但如果是动手操作,那可能需要额外预留更多的时间。
3、如何提问?
你在想,小兵是不是太矫情了,找你咨询是看得起你,问一个问题要这么麻烦吗?
年龄增长之后,时间成了最宝贵的资源。答疑需要从工作和生活中抽出时间,而且经常被一大堆问题淹没,所以不得不过滤掉一些问题,特别是那些没头没尾随意发问的情况。所以说,提问的技巧同样很重要。
(1)选对地方找对人
学习SPSS,我一直推荐原人大经济论坛SPSS专版,在哪里你可以获得大量资料,同时可以发帖提问获得帮助。
除了大的平台,你也可以找熟悉SPSS统计分析的人,比如电子书的作者小兵,个性化的问题适合一对一的交流讨论。
(2)恰当的时间
找别人帮忙,尽可能考虑对方的时间。比如上班时间,最好是留言,而不是直接发问。选择时间相对充足的下班时段、周末时段会更容易获得及时的反馈。
(3)用辞贴切,语法正确,拼写无误
粗心的写作者通常也是马虎的思考者。 回答粗心大意者的问题很不值得,我们宁愿把时间耗在别处。 更直接的说,如果你的提问写得乱七八糟,你的问题很有可能被忽视。
(4)精确描述,信息量大
按照“定义问题”准备好你的问题,依次进行罗列,准确的描述你的身份,问题的环境和目的,如果有可能,告诉对方数据规模,变量类型,以及你已经尝试了哪些统计分析方法,最后一定要说明你的需求。
(5)客气谦逊
整个过程不要显得太着急,记得时刻保持稳妥的节奏和风度。
4.找不到答案怎么办?
如果仍得不到答案,请不要以为我们忽略了你。有时只是看到你问题的人不知道答案罢了。没有回应不代表你被忽视,虽然不可否认这种差别很难区分。
回过头再去体会问题是不是描述的足够清楚,保证对方能看懂,或者尝试自己来解决。总之,即时最终没能得到答案,也要保持风度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01