京公网安备 11010802034615号
经营许可证编号:京B2-20210330
预测未来,原本只存在科幻电影与想象中。大数据的出现,终于让人类有可能掌握这一神奇的力量。每个公司都在贪婪地收集数据,期待能在竞争中抢占先机。大部分公司认为,收集的数据越多,预测的准确性就越高。但这种论断并不完全正确。
当今企业面临的最大问题是数据泛滥,很多企业已经被海量的数据淹没。前所未有的计算能力,飞速发展的传感器技术和日新月异的数据挖掘工具,这些都为公司带来大量非结构化的原始数据。公司现在缺乏的是“正确”的数据。
想要正确的答案,先问正确的问题。
到目前为止,企业所应用的软件系统是以功能为基础的。举例来说,电子商务应用软件的主要功能是完成交易。尽管它也会收集数据,但这些数据都是和改善消费体验相关的,它不会去收集其他数据。换言之,公司凭借本能去鲸吞数据,并没有带着明确的目的和问题。当然,这些数据对完成交易功能已绰绰有余,但当公司用数据分析制定战略决策时,例如进入新市场或为产品定价,他们就会发现,手头的数据根本无法回答这些问题,我们将这种现象称为数据缺口。
要填补数据缺口,公司要彻底改变软件系统的设计和应用思路,它们要为数据分析而生。公司要抛弃漫无目的的数据收集方式,要有的放矢地去收集数据。未来,新一代软件系统将成为公司数字供应链的第一个环节,它不但能满足基本的功能需求,为消费者服务,更能为公司收集正确的数据,解答公司最迫切的问题。因此,对公司来说,技术现在已不是最大的难题,最大的挑战是根据自身业务需求,设计出正确的问题。
量化周边世界。
当公司无法收集需要的数据,那么就应重新审视收集这些数据的方法。有很多软件公司已经开始研发下一代软件系统,添加更多的API(应用程序编程接口),让用户更便捷地从软件中提取数据。
公司也在行动,他们在客户交互系统中添加更多的数据收集点。Netflix(在线影片租赁公司)会记录用户观看影片的整个过程,例如用户何时会暂停播放,又会重复观看哪些片段。Knewton(在线教育公司)则观测学生如何使用公司的软件,例如他们完成作业的时间、最高得分、甚至学生的键盘记录和完成某一问题的时间。公司创始人兼CEO何塞·费雷拉说:“我们每天要从每位学生身上获取数千个数据点。”
传感器技术的发展,使公司获得了又一件填补数据缺口的利器。UPS开发了一套车载传感器和手持电脑系统,它不仅可以追踪货物的位置,还可以跟踪送货车辆的行程。通过这套系统,公司发现,送货路线中左转弯越多,送货的速度就越慢,油耗越高。根据这些发现,公司将送货路线中的左转弯限制到最低的数量,仅这一措施,就使公司每年节省约九百万加仑的汽油。
创建数据供应链
在很多公司中,辛苦得来的数据只停留在硬盘中,无人问津。公司应停止建立数据仓库,而去打造一条数据供应链。得到可靠的数据源后,公司还要将这些数据组合、分析,就像工厂的生产线将零部件组装成产品一样。一直以来,数据分析对公司来说是一个艰巨的挑战,但这在很大程度上是由于此前公司分析数据方式无目的性。要有效地分析数据,公司必须想方设法地搞清楚,什么样的数据才能够支持战略决策,并确保收集正确的数据。换句话说,公司要带着明确的目的收集数据,这样才能带来更好的数据和更好的分析结果。
福特公司研究发现,购买混合动力汽车的消费者都颇具环保意识,他们希望电力驾驶的比例尽可能高。但是在原先的驾驶系统中,是否进行油电切换取决于电池的剩余电量。如何在保证汽车正常运行的前提下,尽量提高电力行驶的比例呢?带着这一明确的问题,福特分析了车载GPS上的数据,他们发现很多车主的驾驶范围集中在几个固定的位置之间,例如学校、公司和超市等。于是公司开发了一套路径算法,当电脑发现汽车的行驶范围在电池的容量之内时,汽车就会更多地依赖电池行驶。
在不久的将来,一些公司将会建立起行动敏捷的数据供应链,形成数据收集、数据分析和结果反馈的良性循环。随着商业环境和战略的变化,他们会重新设计自己的问题,收集并分析全新的数据。
转变企业文化
在向数据分析转型中,仅仅在软件开发环节加入数据需求还不够,下一步是要培养以数据和事实为导向的企业文化。公司要淡化业务模块(数据的使用者)与IT模块(数据的提供者)之间的界限,这样才能同时提高两者的效率。
为达成这一目标,很多公司在内部设定新的高级管理职位,例如首席数据官(Chief Data Officer)。他们负责数据的收集、整合、输送和分析。即便没有这样一位数据带头人,每位员工都要培养寻找更好、更多和更新的数据的意识。只有这样公司才能系统性地使用数据引导决策,变成更聪明、更成功的组织。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27