
打破数据挖掘5神话
数据挖掘是一种强大的分析工具,可以使企业管理人员从描述顾客历史行为开始进一步达到预测顾客未来行为。它可以找出能解释顾客行为的规律。这些数据可以用来增加收入、降低费用、找出商业机会,以增加新的竞争优势。
会有关于数据挖掘的神话产生的部分原因是人们对它没有一个清晰的概念。数据挖掘的本质是一套复杂的数学方法,用来在详细的数据中找出并解释以前未知的规律。数据挖掘解决的是不同类型的问题。它可以用来预测未来的事件,例如在进行市场推广后的下一个月份的销售额。
许多成功的公司已经意识到,围绕着数据挖掘而衍生的神话并非事实。有远见的企业不仅不会成为这些神话的受害者,而且他们会通过使用数据挖掘来解决复杂的企业问题并达到赢利,因此获取了巨大的竞争优势。由此打破了有关数据挖掘的5个神话。
神话一:数据挖掘提供立时可见的预测
数据挖掘既不是占卜用的水晶球,也不是一按按钮答案就会魔术般跑出来的技术。它是一个多步骤过程,包括明确企业问题、研究并整理数据、开发模型、应用获取的知识。一般情况下,各企业都用大部分时间来对数据进行预处理和整理,以保证数据无冗余、无瑕疵、连贯一致及合理组合,以提供可靠的商业情报。数据挖掘的一切都是围绕数据来进行的,成功的数据挖掘需要准确反映企业运营的数据。
各企业必须了解数据挖掘的优势所在,即处理本质上可预测或可描述的具体企业问题。这些问题包括:客户细分、预测顾客购买倾向、查找欺诈、渠道最优化。
神话二:数据挖掘还不适用于商业应用
数据挖掘是一个可行的技术,其商业效果得到了高度评价。关于不适用于商业应用神话的产生归因于那些需要解释他们为什么还没有使用数据挖掘的人,且围绕着两个相关的陈述。第一个是“超大型数据库不能被有效地进行挖掘”。第二个是“数据挖掘在数据仓库引擎中不能进行。”
让我们同时解决这两个陈述的问题。因为现在的数据库非常大,所以许多企业均担心数据挖掘项目所需的额外IT基础设备会增加巨大的成本,而且针对某一项目的数据处理要花过分长的时间。但是目前有些数据库使用平行技术,它可以在数据库内进行挖掘。通过在数据库内进行挖掘,各企业可以不移动数据,利用平行处理,将数据冗余降为最低,避免因建立及维护一套全新的、数据挖掘专用的冗余数据库所带来的成本费用。通过平行处理进行的数据库内挖掘即是可行的数据挖掘技术。
神话三:数据挖掘需要单独的、专用的数据库
数据挖掘供应商一般会宣称,你需要一个昂贵的、专用的数据库、数据集市或分析服务器用于挖掘数据,因为需要将数据拉入一个专属格式以进行高效数据处理。这些数据集市不仅购买及维护的费用昂贵,它们还要求每一个单独的数据挖掘项目都进行数据抽取,这是一个昂贵并费时的过程。
数据库技术的发展使得数据挖掘可以不在单独的数据集市中进行。实际上,有效的数据挖掘需要建立一个企业级数据仓库,其全部成本比采用单独的数据集市的成本要低得多
现在我们来分析一下其中的原因。当在整个企业范围内采用数据挖掘项目时,使用数据挖掘模型的用户持续增加,同时使用大型数据基础设备的需求也在增加。一个尖端的企业级数据仓库不仅高效地储存了所有企业数据,省去了大部分其他数据集市或数据库,它还为数据挖掘项目建立了一个理想的基础。此基础是一个单一的企业范围内的数据存储库,它提供了前后一致的最新的顾客情况。通过将数据挖掘延伸整合到数据仓库,企业还可以在另外两个方面降低成本。首先,无须为数据挖掘购买并进行维护额外的专用硬件设备;其次,因采用数据挖掘技术,企业可将把数据从数据仓库中导出和导入的需求降为最低,而这一过程,像我们介绍的那样,是需要花费大量的人力和资源的。
神话四:只有博士们才会做数据挖掘
一些人认为数据挖掘是非常复杂的,至少需要三个博士才能实施它:一位来自于统计或量化领域;一位在商业领域,他了解顾客;另一位来自于计算机科学。
而实际上,成功的项目里从没有见过一个博士的身影。
数据挖掘是在以下三个领域中通过所有专业员工的合作所达成:商业运营人员提出一套明确的企业问题来引导此项目,然后他们必须解释出现的规律;分析建模人员了解数据挖掘技术、统计学和工具,他必须建立一个可靠的模型;IT人员提供了对处理及对数据理解的洞察力,也提供了关键的技术支持。
神话五:数据挖掘仅为大型公司所用
一个公司,不论大小,只要它能准确地反映其业务或客户的数据,它就可以建立运用这些数据的模型,以提供洞察重要的商业挑战的能力。企业具有的顾客数据量从来不是一个问题。
例如,Midwest Card Services公司(MCS)为20万位顾客提供电话市场推广服务、ATM管理服务、签账卡和专门的金融服务。此公司使用了一个集中式数据库以更加了解其客户群,进行有效的客户细分,并了解他们的规律及偏好。这使得MCS可以改进它自己的保险机制,并为客户提供全面的业务报告。
我们的结论是:数据挖掘不再是运行缓慢、价格昂贵或过于复杂而无法有效运行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01