京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,实现精准营销并非无规律可循,关键三部曲,其中用户画像是核心:
第一步:知己,意味着知道自己产品的定位是什么,产品卖点是什么等等。
构建产品标签+内容标签。
第二步:知彼,简单的说就是清楚竞争对手的情况、清楚目标用户的情况。
构建用户标签,识别自身竞争力,选取切入点。
第三步:作战,对不同的对象采取不同的策略,直击痛点,实现转化。
大数据时代下,企业如何驾驭数据,利用数据驱动、支持决策,是形成差异化竞争优势的关键所在。这听起来不错,但如何真正落地,是非常不容易的事,尤其是传统企业。
对于企业来说,营销是关键的一步,也是数据驱动作用比较显性的一步,如何通过对数据的采集、处理、分析,洞察用户需求,精准找到目标用户群并提供相应的方案,从而实现企业盈利、用户体验双赢,是顺应时代大势。
精准营销的概念是科特勒在05年的时候提出来的,科特勒是现代营销学之父,他写的《营销管理》非常经典。 这个精准营销的概念是这么定义的:在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现企业可度量的低成本扩张之路。
简单来说就是:5个合适,在合适的时间、合适的地点、将合适的产品以合适的方式提供给合适的人。这就跟我们人际交往中的男女恋爱是比较相似的。必须是对的时间遇到对的人。
营销三部曲:知己、知彼、作战
1、知己
意味着知道自己产品的定位是什么,产品卖点是什么等等。构建产品标签+内容标签。
2、知彼
简单的说就是清楚竞争对手的情况、清楚目标用户的情况。构建用户标签,识别自身竞争力,选取切入点。
3、作战
在这个基础上,对不同的对象采取不同的策略,直击痛点,实现转化。
在对企业自身情况和产品情况分析这个环节,重点就是,可以根据产品特征,定位出我们的目标用户。接下来,我们就要对目标用户进行分析。怎么分析?这就需要对用户进行画像。
1. 什么是用画像?
用户画像,简单来说就是通过一系列简短、精炼、易识别的语言来描述一个人/物。
比如说,范冰冰,性别:女;职业:演员;年龄:30多岁;婚姻状态:已婚/未婚;收入情况:高;大家可以从自己关注的角度去了解,这里就不多说了。
但是要强调一下:用户画像不是一个数学问题,也不是技术问题,实际上是一个业务问题。关键在于我们希望从哪些角度去了解我们的用户,这个是跟我们的目的相关的。
比如,我们想追求范冰冰,那关注点应该是婚姻情况/恋爱情况,喜欢吃什么,有什么爱好;那如果我们是希望给她推荐化妆品,那关注点可能就是,皮肤是不是敏感、油性还是干性这些了。关键还是业务问题,但是用户画像的实现更多是技术问题,主要是给用户打标签。
2. 用户画像怎么做?
这里的标签,就是刚才我们提到的观察的一个角度,比如,性别、年龄、爱好、家庭情况、购买能力等。
具体来讲,当为用户画像时,需要以下三个步骤:
第一步:数据采集,因为我们用户画像是为了了解用户,因此需要收集用户所有的数据,主要包括静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如网页浏览行为、购买行为等;
第二步:分析这些数据,给用户打上标签和指数,标签代表用户对该内容有兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等;
最后将这些标签综合起来,我们对用户就有大概的了解了。
3. 用户画像怎么用?
在完成用户画像之后,我们就可以用来精准营销,当然用户画像还有其他的应用场景,比如用户洞察、个性化推荐之类的应用,或者直接进行数据变现。具体的应用场景需要根据公司、业务的具体情况进行应用场景设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16