京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,实现精准营销并非无规律可循,关键三部曲,其中用户画像是核心:
第一步:知己,意味着知道自己产品的定位是什么,产品卖点是什么等等。
构建产品标签+内容标签。
第二步:知彼,简单的说就是清楚竞争对手的情况、清楚目标用户的情况。
构建用户标签,识别自身竞争力,选取切入点。
第三步:作战,对不同的对象采取不同的策略,直击痛点,实现转化。
大数据时代下,企业如何驾驭数据,利用数据驱动、支持决策,是形成差异化竞争优势的关键所在。这听起来不错,但如何真正落地,是非常不容易的事,尤其是传统企业。
对于企业来说,营销是关键的一步,也是数据驱动作用比较显性的一步,如何通过对数据的采集、处理、分析,洞察用户需求,精准找到目标用户群并提供相应的方案,从而实现企业盈利、用户体验双赢,是顺应时代大势。
精准营销的概念是科特勒在05年的时候提出来的,科特勒是现代营销学之父,他写的《营销管理》非常经典。 这个精准营销的概念是这么定义的:在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现企业可度量的低成本扩张之路。
简单来说就是:5个合适,在合适的时间、合适的地点、将合适的产品以合适的方式提供给合适的人。这就跟我们人际交往中的男女恋爱是比较相似的。必须是对的时间遇到对的人。
营销三部曲:知己、知彼、作战
1、知己
意味着知道自己产品的定位是什么,产品卖点是什么等等。构建产品标签+内容标签。
2、知彼
简单的说就是清楚竞争对手的情况、清楚目标用户的情况。构建用户标签,识别自身竞争力,选取切入点。
3、作战
在这个基础上,对不同的对象采取不同的策略,直击痛点,实现转化。
在对企业自身情况和产品情况分析这个环节,重点就是,可以根据产品特征,定位出我们的目标用户。接下来,我们就要对目标用户进行分析。怎么分析?这就需要对用户进行画像。
1. 什么是用画像?
用户画像,简单来说就是通过一系列简短、精炼、易识别的语言来描述一个人/物。
比如说,范冰冰,性别:女;职业:演员;年龄:30多岁;婚姻状态:已婚/未婚;收入情况:高;大家可以从自己关注的角度去了解,这里就不多说了。
但是要强调一下:用户画像不是一个数学问题,也不是技术问题,实际上是一个业务问题。关键在于我们希望从哪些角度去了解我们的用户,这个是跟我们的目的相关的。
比如,我们想追求范冰冰,那关注点应该是婚姻情况/恋爱情况,喜欢吃什么,有什么爱好;那如果我们是希望给她推荐化妆品,那关注点可能就是,皮肤是不是敏感、油性还是干性这些了。关键还是业务问题,但是用户画像的实现更多是技术问题,主要是给用户打标签。
2. 用户画像怎么做?
这里的标签,就是刚才我们提到的观察的一个角度,比如,性别、年龄、爱好、家庭情况、购买能力等。
具体来讲,当为用户画像时,需要以下三个步骤:
第一步:数据采集,因为我们用户画像是为了了解用户,因此需要收集用户所有的数据,主要包括静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如网页浏览行为、购买行为等;
第二步:分析这些数据,给用户打上标签和指数,标签代表用户对该内容有兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等;
最后将这些标签综合起来,我们对用户就有大概的了解了。
3. 用户画像怎么用?
在完成用户画像之后,我们就可以用来精准营销,当然用户画像还有其他的应用场景,比如用户洞察、个性化推荐之类的应用,或者直接进行数据变现。具体的应用场景需要根据公司、业务的具体情况进行应用场景设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27