
从事互联网的你,真的懂流量分析吗?
关于数据化管理的文章书籍已经非常多了,我这里只是近一步整理。数据分析也是为了公司的发展,粗暴一点讲,是为了公司的盈利和持续的盈利。就从这个角度,来逐一分解,互联网行业中,哪些数据需要分析,怎样分析,分析的价值是什么。我会整体分为四大部分:收入相关的数据分析、成本相关的数据分析、风险(为了持续发展)相关的数据分析、综合管理篇。
下面将进行逐一介绍(分阶段更新)。
第一章、收入相关数据分析
互联网的商业模式千变万化,但其盈利模式目前大抵可以分为以下三种:一是向用户出售商品或服务,其中电商和o2o就属这种模式;二是靠广告来进行盈利,典型的例如google、百度以及其他平台类互联网公司;三是直接向用户收取费用,目前游戏公司大都属于这种模式。不同收入模式也有着不同的数据指标,我们分别对其进行介绍。
一、向用户出售商品和服务模式
电商公司和o2o类公司主要是通过这种模式来盈利,公司的收入是由一个个订单堆积出来,其收入状况可通过订单状况得以体现。订单是由用户购买了相关的商品或服务产生,可以说用户和商品或服务为订单的两大基本元素,公司收入下降、增长、异常最终都可以追踪到用户与商品这两大元素上。这样我们将公司收入相关数据拆解为三大模块:用户、商品或服务、订单。
用户
公司收入、订单都是由用户消费所产生,用户的消费流程可以划分为以下四个阶段:引流、转化、消费、存留。我们所希望的理想情况就是大量的用户进来并且产生消费,并且持续的产生消费。然而现实一般是和我们所希望的相差甚远的,我们能做的,就是对这些数据进行分析,根据数据情况进行策略对调整,让现实与理想情况之间的距离越来越近。
我们一般将用户分为新用户和老用户,如下图所示:
无论新老用户,我们都会关心两块内容,一个是引流(拉新),一个是转化,最终以数据的形式体现出来,就是流量与转化率。
引流
一个购物中心,建在荒郊野外,没人进来,装饰再奢华也没什么卵用。根据CNNIC统计,中国网民数量在2015年已达6.88亿,增速稳定,依然维持在5.7%。京东平台2015年第四季度的1.319亿相比2014年第四季度的8280万,流量同比增长率高达59%。这些数字在告诉我们,资源是稀缺的,但是却永远都有增长空间的。我们需要精打细算,实现对每种渠道每种类型的流量来源的最大价值利用。
分析目标:通过对流量的分析,保证流量的稳定性,并通过调整,尝试提高流量。
分析角度:
观察流量规律,便于活动安排、服务调整
发现流量异常,分析异常原因并及时调整
观察流量结构,分析其合理性,并作出调整
追踪流量情况,衡量活动或者调整效果
分析方法:
我们先了解关于流量的一些基本数据指标:访客数(uv)、浏览量(pv)、访问次数(visits),是常用的衡量流量多少的数据指标;
平均访问深度(浏览量/访问次数)、平均停留时间(总停留时间/总浏览量)、跳失率(跳出次数/访问次数)是用来衡量流量质量优劣的指标。
很多方法都可以完成上述的目标,将数据进行可视化展示,以一个合理的角度观察数据,会使得数据展现会更加清晰,降低发现问题的难度。下面将以图表的形式,实现对各个角度的数据分析。
1.观察流量规律,便于活动安排、服务调整
从上图中,可以发现以下规律:一天当中,访问集中在9点到11点和14点到17点这段工作时间,一年中则在春节前后的访问量比较大,每周中也是访问集中在工作日。大部分互联网业务的规律会与上述情况不同,一般2c的业务会在休息时间访问量巨大,可能刚好遇上述情况相反,但并不妨碍以上的分析方式。
一般来说,流量都是以每天中的时段、季节、节假日、星期这样的规律来分布的。所以可以将以上几面统一放到同一页面中进行观测,可以全面的了解应用的访问规律。并且通过对渠道、业务的选择,可以观测具体的渠道、业务的访问规律。
分析出流量的规律,对活动效果、业务调整具有重大影响。例如:a公司想开展为期两天每天两小时的消费满200减50并赠送肥皂的活动,那么活动开始时间最好是选在周三、周四,时间在上午的9、10点钟。这样才能在一定的时间内被大部分用户所知道,毕竟活动的广告时间成本都是钱。另外可以根据不同时期访问量的密集程度,调整公司的业务布局,进行合理的成本控制等。
2.发现流量异常,分析异常原因并及时调整
通过对上图的观察,可以发现两个异常现象:
流量按周的规律分布,工作日的流量较高,周末的流量比较低,但是上图中5月2日和4月1日是周一,流量也非常低,观察日历发现这两天为五一和清明假期,依然是休息日,所以流量不高。属于正常现象。
3月21日到4月17日到流量图中,工作日到流量一般都维持在2400左右,而观察4月18日到5月15日到图,发现流量从4月19日下滑开始,很少突破2000,也就是流量在近一个月有明显下滑。原因可能是对手购买了竞价排名、自己的seo做的不好等等。问题发现,还要根据实际情况进一步分析具体原因。
一般来说,流量以周为单位,周期性分布的情况是比较多的,将视角拉长,一次性多看几个周的数据,便于发现问题。将一段时间内的数据与历史数据进行对比,也有助于问题的发现。
除上图中对流量异常的简单监控外,可以对流量进行进一步分解,如下图所示,通过图表联动,观察具体渠道或者业务的流量情况,从而完成对问题的追踪定位,例如通过进一步分析发现,4月中旬开始的流量下降主要出现在pc端,那么可以进一步缩小问题的范围。便于问题的解决。
3.观察流量结构,分析其合理性,并作出调整
流量结构一般可分为渠道结构、业务结构、地区结构。通过查询一段时间内的各结构占比,了解流量组成。
如上图所示,在渠道中,pc占比相对过大,而app占比不高,app对于用户具有更大的黏度,所以应分析app占比过低原因,并想办法提高app流量占比。下面的折线图可以对各渠道的流量情况进行追踪,分析占比不合理是短期内出现的,还是长期存在的,辅助问题的分析。
怎样的占比才是合理的,在不同的场景下是不同的,但通常来说,付费流量占比不应过高,通用渠道占比应占据主导地位。对于各业务来说就更加不同。但是可以通过分析对比行业数据或者竞争对手的数据,来分析合理性,当然前提是可以获取到相关数据。
通常渠道来源很多,自主访问、搜索引擎、淘宝付费、京东付费等等。有人会通过渠道流量占比来分析各渠道的质量。仅仅根据流量情况来衡量质量是不全面的,需要配合转化率和roi一起。具体会在后面写到转化率时一起考虑。
4.追踪流量情况,衡量活动或者调整效果
对流量的追踪,一般就是对流量的监控,观察活动前、活动中、活动后的变化情况,评估活动效果。一般来讲,活动期间流量会大幅提升,活动后有一定回落,是一个成功的活动。如果活动期间流量上升幅度不大,或者活动结束后流量大幅度跌落,甚至流量低于活动前的正常流量很多,都不能说是一个成功的活动。
当然,若分析活动效果,需要追踪的不仅仅是流量,包括转化率、订单数、成交额、都需要进行追踪。后面会进行针对性的介绍。
除活动外,公司可能会常常调整渠道投入、页面布局、功能改进等等,每一项调整后,都对流量进行追踪观察,可以分析调整的效果。这里只介绍流量的追踪,在进行产品或渠道的优化调整后,同时需要追踪的还有转化率等,关于转化率会在后面进行介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30