
从事互联网的你,真的懂流量分析吗?
关于数据化管理的文章书籍已经非常多了,我这里只是近一步整理。数据分析也是为了公司的发展,粗暴一点讲,是为了公司的盈利和持续的盈利。就从这个角度,来逐一分解,互联网行业中,哪些数据需要分析,怎样分析,分析的价值是什么。我会整体分为四大部分:收入相关的数据分析、成本相关的数据分析、风险(为了持续发展)相关的数据分析、综合管理篇。
下面将进行逐一介绍(分阶段更新)。
第一章、收入相关数据分析
互联网的商业模式千变万化,但其盈利模式目前大抵可以分为以下三种:一是向用户出售商品或服务,其中电商和o2o就属这种模式;二是靠广告来进行盈利,典型的例如google、百度以及其他平台类互联网公司;三是直接向用户收取费用,目前游戏公司大都属于这种模式。不同收入模式也有着不同的数据指标,我们分别对其进行介绍。
一、向用户出售商品和服务模式
电商公司和o2o类公司主要是通过这种模式来盈利,公司的收入是由一个个订单堆积出来,其收入状况可通过订单状况得以体现。订单是由用户购买了相关的商品或服务产生,可以说用户和商品或服务为订单的两大基本元素,公司收入下降、增长、异常最终都可以追踪到用户与商品这两大元素上。这样我们将公司收入相关数据拆解为三大模块:用户、商品或服务、订单。
用户
公司收入、订单都是由用户消费所产生,用户的消费流程可以划分为以下四个阶段:引流、转化、消费、存留。我们所希望的理想情况就是大量的用户进来并且产生消费,并且持续的产生消费。然而现实一般是和我们所希望的相差甚远的,我们能做的,就是对这些数据进行分析,根据数据情况进行策略对调整,让现实与理想情况之间的距离越来越近。
我们一般将用户分为新用户和老用户,如下图所示:
无论新老用户,我们都会关心两块内容,一个是引流(拉新),一个是转化,最终以数据的形式体现出来,就是流量与转化率。
引流
一个购物中心,建在荒郊野外,没人进来,装饰再奢华也没什么卵用。根据CNNIC统计,中国网民数量在2015年已达6.88亿,增速稳定,依然维持在5.7%。京东平台2015年第四季度的1.319亿相比2014年第四季度的8280万,流量同比增长率高达59%。这些数字在告诉我们,资源是稀缺的,但是却永远都有增长空间的。我们需要精打细算,实现对每种渠道每种类型的流量来源的最大价值利用。
分析目标:通过对流量的分析,保证流量的稳定性,并通过调整,尝试提高流量。
分析角度:
观察流量规律,便于活动安排、服务调整
发现流量异常,分析异常原因并及时调整
观察流量结构,分析其合理性,并作出调整
追踪流量情况,衡量活动或者调整效果
分析方法:
我们先了解关于流量的一些基本数据指标:访客数(uv)、浏览量(pv)、访问次数(visits),是常用的衡量流量多少的数据指标;
平均访问深度(浏览量/访问次数)、平均停留时间(总停留时间/总浏览量)、跳失率(跳出次数/访问次数)是用来衡量流量质量优劣的指标。
很多方法都可以完成上述的目标,将数据进行可视化展示,以一个合理的角度观察数据,会使得数据展现会更加清晰,降低发现问题的难度。下面将以图表的形式,实现对各个角度的数据分析。
1.观察流量规律,便于活动安排、服务调整
从上图中,可以发现以下规律:一天当中,访问集中在9点到11点和14点到17点这段工作时间,一年中则在春节前后的访问量比较大,每周中也是访问集中在工作日。大部分互联网业务的规律会与上述情况不同,一般2c的业务会在休息时间访问量巨大,可能刚好遇上述情况相反,但并不妨碍以上的分析方式。
一般来说,流量都是以每天中的时段、季节、节假日、星期这样的规律来分布的。所以可以将以上几面统一放到同一页面中进行观测,可以全面的了解应用的访问规律。并且通过对渠道、业务的选择,可以观测具体的渠道、业务的访问规律。
分析出流量的规律,对活动效果、业务调整具有重大影响。例如:a公司想开展为期两天每天两小时的消费满200减50并赠送肥皂的活动,那么活动开始时间最好是选在周三、周四,时间在上午的9、10点钟。这样才能在一定的时间内被大部分用户所知道,毕竟活动的广告时间成本都是钱。另外可以根据不同时期访问量的密集程度,调整公司的业务布局,进行合理的成本控制等。
2.发现流量异常,分析异常原因并及时调整
通过对上图的观察,可以发现两个异常现象:
流量按周的规律分布,工作日的流量较高,周末的流量比较低,但是上图中5月2日和4月1日是周一,流量也非常低,观察日历发现这两天为五一和清明假期,依然是休息日,所以流量不高。属于正常现象。
3月21日到4月17日到流量图中,工作日到流量一般都维持在2400左右,而观察4月18日到5月15日到图,发现流量从4月19日下滑开始,很少突破2000,也就是流量在近一个月有明显下滑。原因可能是对手购买了竞价排名、自己的seo做的不好等等。问题发现,还要根据实际情况进一步分析具体原因。
一般来说,流量以周为单位,周期性分布的情况是比较多的,将视角拉长,一次性多看几个周的数据,便于发现问题。将一段时间内的数据与历史数据进行对比,也有助于问题的发现。
除上图中对流量异常的简单监控外,可以对流量进行进一步分解,如下图所示,通过图表联动,观察具体渠道或者业务的流量情况,从而完成对问题的追踪定位,例如通过进一步分析发现,4月中旬开始的流量下降主要出现在pc端,那么可以进一步缩小问题的范围。便于问题的解决。
3.观察流量结构,分析其合理性,并作出调整
流量结构一般可分为渠道结构、业务结构、地区结构。通过查询一段时间内的各结构占比,了解流量组成。
如上图所示,在渠道中,pc占比相对过大,而app占比不高,app对于用户具有更大的黏度,所以应分析app占比过低原因,并想办法提高app流量占比。下面的折线图可以对各渠道的流量情况进行追踪,分析占比不合理是短期内出现的,还是长期存在的,辅助问题的分析。
怎样的占比才是合理的,在不同的场景下是不同的,但通常来说,付费流量占比不应过高,通用渠道占比应占据主导地位。对于各业务来说就更加不同。但是可以通过分析对比行业数据或者竞争对手的数据,来分析合理性,当然前提是可以获取到相关数据。
通常渠道来源很多,自主访问、搜索引擎、淘宝付费、京东付费等等。有人会通过渠道流量占比来分析各渠道的质量。仅仅根据流量情况来衡量质量是不全面的,需要配合转化率和roi一起。具体会在后面写到转化率时一起考虑。
4.追踪流量情况,衡量活动或者调整效果
对流量的追踪,一般就是对流量的监控,观察活动前、活动中、活动后的变化情况,评估活动效果。一般来讲,活动期间流量会大幅提升,活动后有一定回落,是一个成功的活动。如果活动期间流量上升幅度不大,或者活动结束后流量大幅度跌落,甚至流量低于活动前的正常流量很多,都不能说是一个成功的活动。
当然,若分析活动效果,需要追踪的不仅仅是流量,包括转化率、订单数、成交额、都需要进行追踪。后面会进行针对性的介绍。
除活动外,公司可能会常常调整渠道投入、页面布局、功能改进等等,每一项调整后,都对流量进行追踪观察,可以分析调整的效果。这里只介绍流量的追踪,在进行产品或渠道的优化调整后,同时需要追踪的还有转化率等,关于转化率会在后面进行介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23