
纽约,大数据挖掘预防火灾
作为一个国际化的大都市,纽约大约有100万栋建筑物,平均每年约有3000栋会发生严重的火灾。那是否有方法预防悲剧的发生呢?据华盛顿邮报报道,纽约消防部门的数据分析师认为,每栋建筑物都有着独特的属性,通过对大量数据的分析就能看出哪些建筑物更易“惹火上身”。
纽约市长手下有一支大数据分析团队,他们的主要职责就是搜集各类城市数据信息,进行趋势分析预测,解决城市治理顽疾。在前市长Michael Bloomberg的推动下,纽约已逐渐发展为数据型城市。过去几年间,不同职能部门通过数据挖掘(data mining)和数据分析解决了包括下水道油污堵塞、罪犯追踪在内的多种城市治理问题。要准确掌握纽约这类超大城市的脉络和动向,数据挖掘是其中重要的一环。
判断一栋建筑物是否属“火”有几条重要的标准:例如贫穷、低收入家庭的住房往往更容易发生火灾,而且低收入人群由于居住密度较高,一旦发生火灾危害更大。建筑物的建成时间也是一个应该着重考量的因素,相对而言,年代久远的房子问题更多,它们很容易由于电路老化或布局不合理引发火灾,而且老房子消防设施落后,发生火灾后,消防员赶赴现场,往往会发现附近根本就没有足够的消防栓。另外,建筑物,尤其是高层建筑中,电梯也是一个重要的影响因素,在很多电梯间明确标注着火灾时严禁使用,这是由于“烟囱效应”使得火势在建筑竖井中蔓延更快,而一旦断电电梯停运,人员的处境就更加危险了。但也有一些电梯配备了备用电源,一般是柴油发电机,并有足够的防火隔离措施,方便住户快速逃生。诸如此类因素,不一而足。
纽约消防部门将可能导致房屋起火的因素细分为 60 个。除去危害性较小的小型独栋别墅或联排别墅,分析人员通过特定算法,对城市中 33 万栋需要检验的建筑物单独进行打分,计算火灾危险指数。这样一来,消防员在出勤时可以根据建筑物的详细资料和危险指数,重点关照“火灾危险分子”。
这项庞大的数据挖掘系统在去年7月份开始实施,并在下半年将数据监测项目扩大到2400余项,诸如学校、图书馆等人口密集度高的场所都会被列入重点监测和检查对象。不过目前公众的质疑在于,如何证明数据分析和防范措施的有效性?纽约消防局发言人表示:“答案还是数据本身,因为我们最终会统计出火灾数量是在下降的。”
芝加哥,给路灯杆装上传感器
可穿戴设备的兴起,使传感器堂而皇之地爬上了人的身体;接着,我们的卧室厨房也被Nest等温控和烟雾传感器占领;我们随身携带的手机,集成的传感器将近10种之多:光线感应器、距离传感器、指纹扫描、GPS、陀螺仪、心率传感器、加速感应器、气压传感器、手势传感器等等;而最近,美国芝加哥市更把传感器安装到了街边路灯杆上,用于收集城市不同角落的路面信息和环境数据。
众多传感器被包括在设计精美、布满小孔的金属盒子里,然后安装在灯柱上,装点城市的同时也能监测空气质量、光照强度、噪音水平、温度、风速,还会通过监测手机Wi-Fi或蓝牙信号清点过往的行人。第一批“灯柱传感器”将在今年7 月中旬安置在芝加哥市密歇根大道上8个繁忙的十字路口。后续会首先在旧城区布置,预计 2015 年底完成,并在未来几年全面占领芝加哥市的大小街区。
面对公众对于侵犯个人隐私的质疑,参与这个计划的科学家,芝加哥城市计算和数据中心负责人Charlie Catlett称,设备在设计之初便做好了规划,只侦测信号,不会记录移动设备的MAC和蓝牙地址,“我们的目的是为了更好地理解城市,这也会让芝加哥市成为最有科研价值的城市。”
在近10年间,全球各大城市都致力于收集城市的各类信息数据,从空气质量、温湿度,到道路车流量和人流量,这种种举措都是为了让城市运作得更加安全高效,而芝加哥市则做得更为彻底——其正在全力打造“大数据之城”。虽然收集和分析大量城市的信息数据,并不会对城市的交通、环境或是安全形势起到立竿见影的效果,但研究人员相信,这些数据将有助于更好地研究和理解现代都市的运作原理,然后逐步从数据中挖掘有价值的信息;而且随着数据量的不断增大,科学家们可以发现和构建不同的模型,并将反过来指导城市规划和政策制定等等。比如芝加哥市安装的此类永久性的数据采集装置将会为政府、独立研究机构或是大学提供概念验证和方案测试服务,并会随着传感器技术的进步及时进行产品升级,满足潜在的科研和学术需求。
另据芝加哥城市信息技术委员会成员Berman介绍,每台传感器设备初次采购和安装调试成本在215425美元之间,运行后的年平均用电成本约为15美元。该研究项目得到了包括思科、英特尔、高通、斑马技术公司(Zebra Technologies)、摩托罗拉以及施耐德等的技术和资金支持。
过去10年,我国一直在不遗余力地鼓励、扶持国内智慧城市的发展,中央和各地方政府投入了大量的资金进行相关的基础设施建设,以平安城市中的科技强警战略和“3111”试点工程两大项目为例,从2004年国家提出创建平安城市、平安社会到2010年止的6年多时间内,科技强警示范城市总量达180多个,“3111”示范城市覆盖80多个地市以及下属的400多个市、县和街区,总投资额达千亿元以上,先后投入使用的各种终端设备和传感器数量巨大、收集到的各种信息和数据更难以统计。如何才能更有效地用好这些基础设施?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15