京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小白学数据分析--ARPPU的误区
今天提到了一个概念:ARPPU。这个概念等同于之前大家认识的ARPU(其实这句话我是很不愿意说的),ARPPU是总收入除以总付费用户数,得到的每个付费用户的平均收益。今天说的误区其实也就是大家一个使用上或者是认识上的误区,这个误区被巧妙的利用了,以至于那些可能不会注意到细节的人被蒙蔽了。
ARPPU是一个算数平均数,在均数的范畴中,概念很大,比如几何平均,截尾平均,调和平均(主要用于在玩家升级的平均速度方面的应用)等等。而恰恰因为ARPPU是算数平均数,所以,一些使用上的误区或者认识是需要背去校正的。
算数平均数是描述数据分布的集中趋势的统计指标,但是如果数据分布严重的偏态,那么这个时候算数平均数算出来的结果其参考意义是有限的。从ARPPU来讲,我们希望通过ARPPU的计算能够代表整个付费群体的平均消费水平和收入贡献,也是集中消费的趋势。但,对一款游戏而言,事实上并不是如同我们考虑的那般呈现所谓的正态分布形式,其实,如果我们把每人收入贡献绘制成频数分布来看,这是一个典型的幂律分布。小额付费群体多,但收入贡献少,大额付费群体少,但贡献收入多。而这时如果合并一起进行ARPPU的计算,显然高估了小额群体的付费能力,低估了大额群体的消费能力。

从集中趋势分析的角度来看
其实,多少年来,不是非常懂得精细化运营的人都是这么粗略的看待这个指标进行分析的,而现在对于这样一个使用误区,尤其当我们进行精细化运营后,需要更多的是跟多的群体细分,群体定位。当然,如果我们要从宏观把控整个游戏的平均消费水平,一种办法是去掉一些噪声,比如截尾均数(按比例去掉两端数据,在计算均数,如果和原来的均数相差不大,则说明极端值不存在,均数不受影响,一般是取5%),除了这种方法,这里我们可以通过一种非常简单的统计指标来分析,这就是中位数。
中位数:全体数据按大小排列,在数列中处于中间位置的那个值。中位数主要是位置平均数,所以不会受到极端值的影响,因此在评估ARPPU这类衡量平均水平,但是偏态分布严重的情况,中位数是很合适的,更加能够代表其集中趋势和平均水平。
从离散趋势分析的角度去看
百分位数
我们知道游戏中付费用户群体我们划分为三个部分,小鱼用户,海豚用户,鲸鱼用户,三个群体我们可以通过对总的付费群体进行百分比划分,这里就是用了百分位数据,所谓百分位数就是一个位置指标,我们可以把所有玩家的付费额从小到大排列,然后按照百分比划分,比如从左向右50%为小鱼,40%为海豚,10%为鲸鱼。在此情况下,我们分别计算各个群体的ARPPU值,这个相对我们刚才的从宏观的得到ARPPU,会更加准确的分析不同群体用户的消费能力。实际上刚才说到的中位数其实就是一个特殊的百分位数。
当然了,从离散趋势分析的角度,全距也都是可以去使用的,也是很简单的,这个只是一种检查而已,但是就方差,标准差等可能并不适合在游戏中消费数据的分析,虽然说他们涉及我们要分析的每个变量,但是由于他们也受到极端值的影响,所以不适合去做这种分析,他们的合理使用范畴是在服从正态分布的数据中。
总的来说,一个ARPPU所代表的内容很多,但是我们在使用和分析中,要避免一些误区产生。也要适当的使用统计学的一些灵活的方法重新审视和分析这些数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27