
同期群是一种用户分群的方式。
同期群按用户的新增时间将用户分群,得到的每个群叫一个同期群。
举个例子:
从上帝视角看,对地球这个产品的用户(即人类)的进行划分,得到的同期群就是「70后」、「80后」、「90后」、「00后」……(按新增即出生时间划分)。
对您的产品来说,对用户划分得到的同期群就是「本周新增的用户」、「上周新增的用户」、「上上周新增的用户」……当然也可以按天或按月划分,时间颗粒度可大可小,但重要的是按新增时间划分。
同期群分析是指将用户进行同期群划分以后,分析和对比不同同期群组用户的相同指标,这套分析方法就是同期群分析。
要点:
对用户进行同期群划分
对比不同同期群组(比如本周新增用户和上周新增用户的)
的相同指标(比如注册转化率)
为了便于理解,这里举几个同期群分析例子以供参考:
| 例1 |
现象:一个App,某一天有100位新用户安装并“首次”使用,一天后还剩98人用,两天后…三天后……N天后还有95人在用。
结论:这个产品的粘性非常非常好,几乎全部用户都留存下来,没有流失。
| 例2 |
现象:还是这个App,3月份的新增用户有XXX人,其中只有3%的人安装了第二天还在用。经过运营的改进,4月份的新增用户有YYY人,安装第二天还在用的人提升到了15%。又经过产品改进,5月份的新增用户有ZZZ人,安装第二天还在用的人提升到了30%。
结论:改进前,这个产品非常糟,第二日流失率相当高;但多次产品改进后,其用户粘性得到了大幅提升。
| 例3 |
现象:某电商应用,首次产生购买行为的用户:在“首次购买”之后第一个月内平均买买买10次,在之后第二个月内平均买买买8次,但到了第三个月,平均买买买不足1次。
结论:用户的购买行为在首次发生2个月后骤降,应进一步分析背后原因,并加以改善。
进行同期群分析最重要的原因是:
同一项产品改进,对不同同期群中的用户,产生的影响是不同的,分开衡量才更能反映真实的情况。
举例来说:
「计划生育」这项伟大的产品策略,只影响「50后 ~ 90后」几个同期群中的用户。因为:计划生育开始实施时,50前的人们已经过了生育年龄,而计划生育结束(全面放开二孩)时,00后还未到生育年龄。
对于产品来说也是如此:
如果你为产品增加新手引导,那么只对之后新增的用户(同期群)产生影响,而不会改变老用户的行为;
如果你准备发放优惠券,那么对刚刚注册的用户和已长期使用的忠实用户,产生的效果会有差别;
……
同期群分析是一种分析方法,但更重要的是其背后的思考方式。
所以,请确保你已经充分理解了同期群的概念、同期群分析的基本思路以及为什么应该采用同期群分析(如果还不清楚,请重新、反复阅读前文)。
一旦你掌握了它,只要有合适工具(比如诸葛io)的帮助,您几乎可以在任何场景下使用它:
衡量产品业务的整体进展;
评估产品改版的效果;
优化产品的用户体验;
寻找产品改进关键点;
提升用户参与度;
……
总的来说,所谓同期群分析方法,就是将用户按初始行为的发生时间进行划分为群组。
对处于相同生命周期阶段的用户进行垂直分析(横向比较),从而比较得出相似群体随时间的变化。如上图的例子表明:从初始行为开始,用户的使用频率在逐渐降低。
通过比较不同的同期群,可以从总体上看到,应用的表现是否越来越好了。从而验证产品改进是否取得了效果。
现在,你能理解同期群分析了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04