
大数据和统计学并不矛盾_数据分析师
通常,对于新的IT关键词必定会出现反对派。最近,大数据就成为被攻击的对象,诸如大数据失败论等论调也明显增加。
业界对大数据抱着极大的期待,这一点从大量的大数据研讨会和展示会风潮就足以证明。这些年来,除了云计算浪潮,缺乏热烈话题的IT业界而言,大数据是期待已久的大型关键词,也许大数据会成为恢复业界活力的强心剂。
与此同时,日本政府提出新的IT战略--将行政数据向民间开发,以便不断创造新商务。也就是说,如何有效利用数据,推动商业成功,业已成为国家战略的一环。
虽然笔者既不是强烈的赞成派也不是反对派,但通过以往的采访经验,对处理数据的难度有着清醒的认识。更何况涉及到大数据,其难度显而易见。
笔者周边很多人对大数据也有着各种不同的看法,提出各种问题。当然这些对于IT业界的读者而言,都是理所当然的事情,笔者说这些也许是班门弄斧了。但是,正是这些众所周知的道理通常也是非常重要不可忽视的。因此,下面笔者将重新提出大数据的陷阱,探讨如何才能避免运用大数据的失败。
是否真正需要大量的数据
首先,必须明确的一点是,是否真正需要大量的数据。
在一次活动中,一位统计分析的专家在谈到大数据时说:本来统计分析学是如何通过少量的取样,去了解事务整体的学问。例如,电视的收视率调查就是一个典型的事例,这类调查就是通过极少的样本,来掌握日本全国的收视状况。如果目的明确,并不需要大量的数据。
由于上述言论出自目前作为数据科学家备受瞩目的统计分析方面的专家之口,让笔者不禁大吃一惊。这就是说,只要有一定量的数据,无关数据数量,分析的结果并不会有很大的差别。如果果真如此,不禁让人产生怀疑,即到底大数据是为何而存在。
听到上述观点,使人感到大数据所面临的矛盾的应当不仅仅是笔者一人。本以为通过大数据分析,满怀期待能够发现以往没有认识到的新的东西,但有时其结果不过是已有所知的事实而已。如果企业为系统开发投入数十亿日元,得出的不过是证明资深职员经验的结论,这也未免让人难以接受。
正因为如此,就有必要重新考虑为何需要大数据这一问题。例如,企业需要明确通过将有交易往来的公司和社交媒体等本企业外的大量数据进行组合,是为达到何种目的等,即有必要事先制定大数据的目标。
数据的质量有无问题
第二点是由谁来维护大量的数据,即数据的质量如何能够得到保障。
笔者曾听说这样一件事。某企业的总经理每个月都会收到有交易往来的IT供应商的宣传(PR)杂志,但收件人的头衔不是总经理,而是他曾经兼任公司CIO时的头衔常务董事。虽然将头衔搞错,但还是都能收到,因此并没有太在意。但当这家IT供应商的总经理到公司进行礼节性拜访时,就提出了希望改一下头衔的想法。
而这家IT供应商的新的卖点是大数据,公司的总经理当场表示回去马上会进行修改。起初以为这点事情对于运营大数据业务的IT供应商而言不过是举手之劳,一定会进行纠正。但是,等到下一个月他收到的的PR杂志时,发现收件人的头衔仍然是常务董事。这位总经理通过两本PR杂志感到仿佛看到了大数据的现状,因此他非常失望地说:归根到底IT供应商并没有维护顾客数据库。
上述例子虽然是顾客数据,而不仅仅是顾客数据,说到大数据必然还需要处理很多各种各样的企业外部的数据。但是,这些数据是否是最新数据,其数据的精确度又如何等数据的质量就会非常重要。分析出处不明的数据将毫无意义。如果顾客数据不能随时进行维护,也就不会产生任何价值。不应当将当初以为是宝山的大数据,变成一座堆满垃圾的山。
是否忽视了现场职工的工作干劲
第三点就是企业不仅应当努力培养数据科学家,同时也需要提升现场职员的分析数据的能力。如果在店头等现场直接接触顾客的员工变得擅长数字,他们也能够常常通过数据考虑事情并进行判断,这样的企业必定会强大起来。
例如,有一家超市的店头销售员就从与顾客的对话中得到启发,通过购进新的商品或是改变商品陈列的方法,提升了销售额。又比如,在特快列车上负责销售的员工,发现似乎可吸烟座位的咖啡畅销,当他整理出不同列车的销售业绩,结果发现确实是如此。于是决定在吸烟车厢集中推销咖啡,结果咖啡的销售量明显增加。
当然,通过现场增加的销售额,也许和利用大数据获得的销售数字相比很小,而且其分析能力也远远不及数据科学家。但是即便如此,如果通过将这种方式横向拓展到其他现场,积累的数字也会非常可观。同时,最为重要的是,这种方式能够提升现场员工的工作动力。
实际上,某零售企业自从将其销售分析统一由总公司实施后,店头员工就失去干劲,甚至出现退职的员工。这说明只依靠上级的指令,则会降低现场的职业道德。因此,这家公司决定给予现场员工自由分析判断的职能,由此店头又重新恢复了活力。虽然大数据非常重要,但是如果将权限集中在某些部门,则会导致现场丧失工作干劲。
以上三点实际上不仅仅对大数据而言非常重要,而且同时适用于整个信息系统。大数据是IT业界期待已久的关键词,为使其成长壮大,就需要脚踏实地的努力,而不应被其华丽的部分所束缚摆弄。正因为如此,笔者认为提出的上述三点需要重新铭记心中。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18