
规划求解来计算最小化运输成本
今天我们根据一个实例来学习一下用Excel的规划求解来计算最小化运输成本。
某超市从A,B,c三个地方采购苹果,运往4个消费区:首都圈、中部、关西、九州。运输路线不同,运输一箱苹果的成本也不同(表1)。假设苹果种类没有差异,那么为了实现最小运输成本,从哪个产地运往哪个消费区以及运输多少数量最适当呢?但前提是必须满足各个消费区的需求量,同时各个产地的采购能力有限。
这种问题叫做运输问题,可以用规划求解简单解决。
首先,制作如图1所示的工作表。上方的表格(单元格A3——F7)是表1中的数据,下方的表格(单元格A10一G14)用于计算。
在单元格B11——E13中求从各个产地运往各个消费区的运输量(可变单元格),在单元格G14中求总运输成本(目的单元格)。在计算表中输入计算公式(图2)。在单元格B14——E14中显示各个消费区的总需求量。在F11——F13中输入计算各个产地的总采购量的公式。
总运输成本等于从各个产地到各个消费区的运输单价×运输量的总和:
总运输成本(单元格G14)=B4*B11+c4*c11+D4*D11+E4*E11+B5*B12+C5*c12+D5*D12+E5*E12+B6*B13+C6*C13+D6*D13+E6*E13
但是,这样需要计算包含3行x4列的两个表格的各个因子乘积的总和,非常麻烦。
然而使用Excel的SUMPRODUCT函数(积和甬数),可以一次性完成相应行列的各个同子乘积的总和,非常方便。
=SUMPRODUCT(B4:E6、B11:E13)
在单元格G14中,求出总运输成本。
完成上述工作后。运行规划求解。单击“工具”-“规划求解”。弹出“规划求解参数”对话框。在“设置目标单元格”中,指定计算总运输成本的单元格G14。在“等于”中选择“最小值”,在“可变单元格”中指定单元格B11——E13(图3)。
接下来,设定约束条件。由于苹果以箱为单位,没有零数,因此指定整数条件(参照补充)。单击“添加”按钮(图3),弹出“添加约束”对话框(图4)。在左边的“单元格引用位置”中指定可变单元格B11——E13。指定中间文本框的比较符号“int”,右边的“约束值”自动显示出“整数”。
为了输入下述约束条件,单击图4的“添加”按钮,设定运往各个消费区的总运输量大卜需求量的约束条件:
再次单击“添加”按钮,设定从各个产地发送的总运输量小于采购能力的约束条件:
F11:F13≤F4:F6
最后,单击“确定”按钮。
运输量不能是负数。单击“选项”按钮。在“规划求解选项”对话框中,选中“假定非负”,单击“确定”按钮。
在“规划求解参数”对话框中,单击“求解”按钮后,显示“规划求解找到一解,可满足所有的约束及最优状况”,可得如图5所示的最优运输量。
从产地A运往首都圈1800箱,关西3000箱,九州1500箱I从产地B运往中部2500箱;从产地c运往首都圈3700箱。此时运输成本最小,最小运输成本是1501000日元。
以上简要介绍了使用规划求解求最优化问题的方法。实际上,在经营活动中最优规划并非一次性完成。求出结果后,必须分析这个结果足否合适;若不合适,要研究应该改善哪此方而。规划求解提供用于分析的分析报告。
分析报告“有二种类型: “运算结果报告”、 “敏感陆报告”、 “极限值报告”。
各个报告的基本内容如下所示。这里将4 2节“例题4 1最优生产计划”的分析报告用图4 15——4 17表示出来。
1、运算结果报告(图6)
运算结果报告显示“日标单元格”、“可变单元格”和“约束”的状况。表示“目标单元格”和“可变单元格”的初值和终值,是否满足约束条件以及与条件之间的差。
2、敏感性报告(图7)
敏感性报告显示当“可变单元格”和“约束”稍微变化时,“目杯单元格”的数值受到多大程度的影响。
3、极限值报告(图8)
极限值报告显示在约束条件范围内可变单元格的数值的可增减量。 我们已经学会了用Excel的规划求解来计算最小化运输成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01