
大数据六大趋势分析 2020年大数据产业达8000亿
数据,无所不在!无论是个人手机拍照、发视频,发微信,微博互动,还是各个企业里发生的人事、财务、供应链、管理系统等产生的大量数据,或者是房间、空调、电梯等传感器或者设备数据。随着 IT 技术不断发展,我们已经进入到了大数据的时代,人类将在2020 年创造出40ZB的数据量。
过去两年大数据的成长和智能手机的有着紧密的关系,加上IOT的浪潮正在酝酿之中,online与offline的接合带来了更深度的数据关联,触碰到消费者的全渠道行为收集。大数据相关的APP已经集媒体、通信、社交及传感器于一体。
据前瞻产业研究院《2016-2021年中国大数据产业发展前景与投资战略规划分析报告》显示,目前我国大数据产业规模可达1500亿元,未来5年将进入“加速期”,到2020年将达到8000亿元的规模,实现几何级增长。
从产业细分看,大数据产业分为基础层、软件层和应用层三大块,但现在我国大数据应用层仅占10%的比例,明显是个“短板”。现在,我国众多家电、商业、旅游企业都高度重视大数据的搜集和开发应用,对于传统企业来说,大数据是传统产业向“互联网+”改造的必经之路,可是传统企业如何将业务、产品、管理等进行数据化改造,成为企业关注的焦点。
诸多企业都意图通过内部数据的深入挖掘,进而获得更好、更明智和更有效的商业决策,然而现实是企业内部的庞大数据还处于相互割裂状态,其价值很难得到挖掘和体现。只有打破这种数据沉睡、割裂的状态,营造出大数据的生态环境,才能真正把大数据的价值体现出来。
2016数据六大趋势
1.应用无线化:提供了更大的便利性与移动性、让终端设备与资料采集的作业更弹性而有效率;
2.信息数据化:让讯息的流通、交换、加工、运用更趋标准及结构,DT时代数据的应用变得更即时直接;
3.交易无纸化:彻底的改变了我们交易行为与资金流,并赋予未来微经济商业模式更多创新思考的可能性;
4.人类智能化:大数据所产生的创新价值与人类交互并深入于生活之中,人的思维与新科技将会遇上前所未有的碰撞;
5.决策实时化:透过大数据实时采集及加工改变了决策与信息关系。过去的世界因数据不能低成本获取,决策的实时性和精确难以达到;
6.线下线上化:未来仍将呈现线下更多的运用线上数据倾倒的趋势,线上与线下将连接在一起不能分割。
前瞻产业研究院认为,2020年,我国大数据产业中的应用层比例将得到大幅度提升,达到60%,即4800亿元的规模。因此,如今各个企业都在思考加大大数据价值应用“筹码”,未来行业前景看好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30