
为什么大数据能化繁为简?
无论今天您走到哪,人们总是在低头看自己的移动设备。他们上线浏览、购物、服务和处理交易业务。事实上,并不只有消费人群在使用移动设备,其也被广泛应用于b2b交易。
消费者和潜在客户已经成为互联网时代的主导。在购买之前,社交网络、货比三家和查阅网站成为他们快速获取相关信息的渠道。无论身处何地,信息都在他们的指尖下。若质量和服务并不能达到用户的需求,他们便能自由地去选择只看一眼或者按下按钮。
在这样一个快节奏的、在线的移动经济时代,企业的寿命其实在缩减,而客户的重要性就像整个公司的CEO一样见怪不怪。消费者关乎于企业的生存问题,故企业同样需要和客户一起共同成长,并且优化自身业务的运营、降低风险和提高财务管理水平。企业能否生存下去不仅要学会如何留住自己的客户,还要尽可能的去全面的了解他们。
全新的数据资源
你真的了解自己的客户吗?许多企业对此的认知通常只是建立在一个数据仓库里——它会收集客户交易的信息并且捕捉到交易发生在何时何地。但除非发生交易行为,否则将会一无所知。商业的残酷竞争让人走投无路时,那有可能知道交易数据以外的数据并且分析它吗?答案是肯定的。我们可以获得更多的新资源。
访问数据:分析每一个访客在网站导航上的浏览情况能进一步了解人们购物和享受服务的渠道,再者他们是通过什么路径进行购买的,又是为什么不考虑购买等等。获取这些信息资源能更好的改善消费者的用户体验,纵观全局。
购物车数据:这类数据主要是来自于用户把商品放入或者拉出购物车的各种情况。
社交网络数据:分析来自于Facebook、LinkedIn和Twitter的数据有机会获得客户更多前所未有的信息。你能获知更多的关系网,人们喜欢或讨厌什么等等。分析这些数据还能够识别多个社区网络中最具有影响力的人有哪些。瞄准这些网红们进行营销活动可以大大地推进销量并效果显著。分析社交网络数据也让你识别情绪信息——人们说关于你的产品,你的客户服务和品牌。分析社交网络数据也能够认识到市场情绪——人们怎样谈论你的产品,你的客户服务以及品牌的情况。
传感器数据:分析有关智能科技的数据如全球定位系统(GPS),它的传感器能通过智能手机传达产品的相关使用或位置信息。其也能够用于监控生产线、资产性能、供应链和分销渠道是否按时交付给了客户。
这些新兴的数据,正向传统数据表格和数据库(RDBMSs)发起挑战。文本数据,例如:非结构化数据。这是由于我们仍想要了解其他诸多细节:有关人们、商品、地点、货币金额、日期和时间,更是去了解数据中包含的“感情”。
如今,我们正在去分析这些结构化数据的形式交易,这是一种数据形式的JavaScript对象表示法(JSON)或XML的形式和非结构化数据的文本和图像。这种数据量可能非常庞大,捕捉和分析高速流数据正不断规模化。
高级类型的分析
基于大数据的复杂性来看,其优越性能超越传统数据库中的分析运作系统,如临时查询和报告、联机分析处理(OLAP)和视觉化数据的发现。其更复杂、更庞大并且更快捷,故需要更高级的分析载体:
运作过程中的数据分析——流分析
复杂的结构化数据分析
探索性分析的数据并未模式化,其进行多结构的情感性分析,如分析Twitter的相关数据。
社交网络图表分析
综上所述,在这样的新形势下,这些新的分析载体非常适用于扩展多样化的数据存储区域,这远远超越了传统数据仓库的分析环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14