
互联网金融正面临的挑战:大数据
一、大数据信息有效性不足
虽然信息时代使得人们面对的信息规模扩大和沟通效率提高, 但是这并不意味着有价值的数据信息获取就变得更加迅捷和容易。
首先,有价值的数据信息获取面临挑战。网络信息资源在扩大人们信息来源渠道和提高信息获取效率的同时,也不可避免的会促使人们遭受大量虚假、无用数据信息的困扰。信息大爆炸造成的信息环境污染和“噪音信息”的蔓延增加了人们识别、判定和利用有效信息的困难。
其次,有价值的数据信息整合面临挑战。使用大数据面临的一大挑战就是如何将社会经济各个主体之间的数据信息能够方便和有效地整合在一起。要想让大数据更有效地服务于人类社会,就必须将存在于社会各个主体中多种格式的海量数据通过统一的数据格式构建融合人、机、物三元世界的统一信息系统。最后,有价值的数据信息生成存在算法演化问题。在现实中,大数据往往是根据各个社会经济主体行为被动产生的,但是数据生成者的商业模式等行为会影响大数据的生成机制,导致其提供的信息不具有时间前后的可比性。以谷歌公司为例,其商业模式的主要目标是更快速地为使用者提供准确的信息。为此,谷歌不断改进搜索算法,使用者可以通过后续谷歌推荐的相关词快捷地获得有用信息。这一模式改变了数据生成机制,容易出现数据使用者搜索的关键词并非其本意的现象。
二、大数据样本选择困难
人们希望通过海量数据信息的收集减少信息不对称,但是这些庞大的数据可能对我们解决问题并不会起到正面的作用。当前,大数据使企业或者机构获取每一个客户的信息、构建客户群的总体数据成为可能。但是,这种大数据并不一定就是我们所要研究对象的全部数据总体。如果我们误将掌握的海量数据当作所要研究对象的数据总体,那么基于大数据分析得出的结论就很有可能是错误的。因此,在分析和研究某个问题时,我们不能迷信大数据的作用。
以“谷歌流感趋势”(GFT) 项目为例,2008 年11 月谷歌公司启动该项目,目标是预测美国疾控中心(CDC) 报告的流感发病率。2009 年,GFT 团队在《自然》杂志发表文章报告,只需分析数十亿搜索中45 个与流感相关的关键词,GFT 就能比CDC 提前两周预报2007-2008 季流感的发病率。但是,2014 年美国《科学》杂志报道,2009 年GFT 没有能预测到非季节性流感A-H1N1;从2011 年8 月到2013 年8 月的108 周里,GFT 有100 周高估了CDC 报告的流感发病率。其中,2011-2012 季期间,GFT 预测的发病率是CDC 报告值的1.5 倍多;2012-2013 季期间,GFT 流感发病率是CDC 报告值的2 倍多。另外,2007 年美国爆发的次贷危机也是一个例证。自20 世纪90 年代起, 美国无论是抵押贷款和信用卡的申请还是资产证券化产品的定价和评级,都是建立在较为成熟的大数据基础上的。但是,金融机构仍然做出了系统性错误的金融决策,成为金融危机爆发的导火索。
三、大数据数据处理技术更新缓慢
大数据虽然可以通过扩大数据样本规模和提升数据处理能力来管理日常经营性的风险,但是代表金融创新风险等未来事件是无法用历史数据进行预测和分析的。
首先,大数据处理技术面临数据生成者学习行为的挑战。大数据处理技术和评估标准影响数据生成者行为,同样数据生成者行为也会影响大数据处理技术和评估标准。以我国大数据重要来源之一的社交媒体为例,这种大数据来源的有效性是有前提条件的,即人们在社交媒体分享的信息都是真实的、自发的、不受大数据处理技术和各种评估标准的影响。但是,人们在互联网时代运用网络学习的能力是不断提高的。如果人们通过学习大数据处理技术和各种评估标准而相应改变社交媒体的信息,就会导致大数据生成机制发生质变。因此,在对大数据进行技术处理时,简单地认为数据生成者都是无意识地生产大数据,忽略了数据生产者行为背后趋利避害的动机,可能就会得出错误的判断和结论。
其次,大数据处理技术面临去冗降噪挑战。在现实中,大数据一般来自于不同的社会主体,以动态数据流的形式产生,人们在方便获取数据的同时,也会使得虚假数据、无效数据等噪声数据的生产成本降低。面对大数据中包含众多不同形态的噪声数据,如何通过数据处理技术的革新来挖掘有价值的信息是我们自始至终都要面临的一项技术挑战。这如同人类社会医学技术创新与病毒变异之间的“竞赛”一样是长期存在的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29