
从传统数据库到大数据引发的范式升级
大数据的出现,必将颠覆传统的数据管理方式。在数据来源、数据处理方式和数据思维等方面都会对其带来革命性的变化。对于数据库研究人员和从业人员而言,必须清楚的是,从数据库(DB)到大数据(BD),看似只是一个简单的技术演进,但细细考究不难发现两者有着本质上的差别。
如果要用简单的方式来比较传统的数据库和大数据的区别的话,我们认为"池塘捕鱼" 和"大海捕鱼:是个很好的类比。"池塘捕鱼"代表着传统数据库时代的数据管理方式,而 "大海捕鱼"则对应着大数据时代的数据管理方式,"鱼"是待处理的数据。"捕鱼"环境条件的变化导致了"捕鱼"方式的根本性差异。这些差异主要体现在如下几个方面:
1、数据规模:"池塘"和"大海"最容易发现的区别就是规模。"池塘"规模相对较小, 即便是先前认为比较大的“池塘”,譬如 VLDB(Very Large Database),和"大海"XLDB(Extremely Large Database)相比仍旧偏小。"池塘"的处理对象通常以 MB 为基本单位,而"大海"则 常常以GB,甚至是 TB、PB 为基本处理单位。
2、数据类型:过去的"池塘"中,数据的种类单一,往往仅仅有一种或少数几种,这 些数据又以结构化数据为主。而在"大海"中,数据的种类繁多,数以千计,而这些数据又 包含着结构化、半结构化以及非结构化的数据,并且半结构化和非结构化数据所占份额越来 越大。
3、模式(Schema)和数据的关系:传统的数据库都是先有模式,然后才会产生数据。这 就好比是先选好合适的"池塘",然后才会向其中投放适合在该"池塘"环境生长的"鱼"。 而大数据时代很多情况下难以预先确定模式,模式只有在数据出现之后才能确定,且模式随 着数据量的增长处于不断的演变之中。这就好比先有少量的鱼类,随着时间推移,鱼的种类 和数量都在不断的增长。鱼的变化会使大海的成分和环境处于不断的变化之中。
4、处理对象:在"池塘"中捕鱼,"鱼"仅仅是其捕捞对象。而在"大海"中,"鱼" 除了是捕捞对象之外,还可以通过某些"鱼"的存在来判断其他种类的"鱼"是否存在。也 就是说传统数据库中数据仅作为处理对象。而在大数据时代,要将数据作为一种资源来辅助 解决其他诸多领域的问题。
5、处理工具:捕捞"池塘"中的"鱼",一种渔网或少数几种基本就可以应对,也就是 所谓的 One Size Fits All。但是在"大海"中,不可能存在一种渔网能够捕获所有的鱼类,也 就是说 No Size Fits All。
从"池塘"到"大海",不仅仅是规模的变大。传统的数据库代表着数据工程(Data Engineering)的处理方式,大数据时代的数据已不仅仅只是工程处理的对象,需要采取新的 数据思维来应对。图灵奖获得者、著名数据库专家 Jim Gray 博士观察并总结人类自古以来, 在科学研究上,先后历经了实验、理论和计算三种范式。当数据量不断增长和累积到今天, 传统的三种范式在科学研究,特别是一些新的研究领域已经无法很好的发挥作用,需要有一 种全新的第四种范式来指导新形势下的科学研究。基于这种考虑,Jim Gray 出了一种新的 数据探索型研究方式,被他自己称之为科学研究的"第四种范式"(The Fourth Paradigm)。表四种范式的比较:
四种范式的比较如上图所示。第四种范式的实质就是从以计算为中心,转变到以数据 处理为中心,也就是我们所说的数据思维。这种方式需要我们从根本上转变思维。正如前面提到的"捕鱼",在大数据时代,数据不再仅仅是"捕捞"的对象,而应当转变成一种基础 资源,用数据这种资源来协同解决其他诸多领域的问题。计算社会科学(Computational Social Science)基于特定社会需求,在特定的社会理论指导下,收集、整理和分析数据足迹(data print),以便进行社会解释、监控、预测与规划的过程和活动。计算社会科学是一种典型的需要采用第四种范式来做指导的科学研究领域。Duncan J. Watts 在《自然》杂志上的文章《A twenty-first century science》也指出借助于社交网络和计算机分析技术,21 世纪的社会科学 有可能实现定量化的研究,从而成为一门真正的自然科学。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25