京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【gloomyfish】Box zoom on Category Plot in JFreeChart
Background:
currently JFreechart did not support domain axis zoom with category plot, the domain and value axis is zoomable only for XYPlot, however when category dataset contains huge categories while user could not select some categories to view by box zoom. the category plot is becoming un-usable one for user. obviously user would like to see box zoom with category plot.
Summary:
from box zoom on XYPlot in JFreechart, i read all relevant source code about zooming in JFreeChart and i found that there is a way to support box zoom on category plot by following steps:
a. support drawing the zoom rectangle in category data area (plot)
b. identify the domain axis and each category start point on domain axis.
c. measure the each category start point with zoom box
d. remove any categories if the start coordinate value is out of zoom rectangle.
Basic Design:
in order to support box zoom on category plot, we need to overwrite following methods which has been implemented in ChartPanel by JFreeChart:
1. mousePressed() - record the start zoom point
2. mouseDragged() - draw zoom box rectangle on category plot
3. mouseReleased() - zoom in the categories which is selected in rectangle.
4. paintComponent() - supporting to draw zoom rectangle
Run Result:
mouse selected rectangle - box zoom
zooming the rectangle
Code Implementation:
package test.it; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Paint; import java.awt.event.MouseEvent; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import javax.swing.JPanel; import javax.swing.JPopupMenu; import org.jfree.chart.ChartPanel; import org.jfree.chart.ChartRenderingInfo; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.CategoryAxis; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.plot.CategoryPlot; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.plot.Zoomable; import org.jfree.chart.renderer.category.BarRenderer; import org.jfree.data.category.CategoryDataset; import org.jfree.data.category.DefaultCategoryDataset; import org.jfree.experimental.chart.plot.CombinedCategoryPlot; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; /** * A demo for the {@link CombinedCategoryPlot} class. */ public class CombinedCategoryPlotDemo1 extends ApplicationFrame { /** * */ private static final long serialVersionUID = 8114720685282689420L; /** * Creates a new demo instance. * * @param title the frame title. */ public CombinedCategoryPlotDemo1(String title) { super(title); JPanel chartPanel = createDemoPanel(); chartPanel.setPreferredSize(new java.awt.Dimension(500, 270)); setContentPane(chartPanel); } /** * Creates a dataset. * * @return A dataset. */ public static CategoryDataset createDataset2() { DefaultCategoryDataset result = new DefaultCategoryDataset(); String series1 = "Third"; String series2 = "Fourth"; String type1 = "Type 1"; String type2 = "Type 2"; String type3 = "Type 3"; String type4 = "Type 4"; String type5 = "Type 5"; String type6 = "Type 6"; String type7 = "Type 7"; String type8 = "Type 8"; result.addValue(11.0, series1, type1); result.addValue(14.0, series1, type2); result.addValue(13.0, series1, type3); result.addValue(15.0, series1, type4); result.addValue(15.0, series1, type5); result.addValue(17.0, series1, type6); result.addValue(17.0, series1, type7); result.addValue(18.0, series1, type8); result.addValue(15.0, series2, type1); result.addValue(17.0, series2, type2); result.addValue(16.0, series2, type3); result.addValue(18.0, series2, type4); result.addValue(14.0, series2, type5); result.addValue(14.0, series2, type6); result.addValue(12.0, series2, type7); result.addValue(11.0, series2, type8); return result; } /** * Creates a chart. * * @return A chart. */ private static JFreeChart createChart() { CategoryDataset dataset2 = createDataset2(); NumberAxis rangeAxis2 = new NumberAxis("Value"); rangeAxis2.setStandardTickUnits(NumberAxis.createIntegerTickUnits()); CategoryAxis domainAxis = new CategoryAxis("Category"); CategoryPlot plot = new CategoryPlot(dataset2, domainAxis, new NumberAxis("Range"), new BarRenderer()); JFreeChart result = new JFreeChart( "Combined Domain Category Plot Demo", new Font("SansSerif", Font.BOLD, 12), plot, true); return result; } /** * Creates a panel for the demo (used by SuperDemo.java). * * @return A panel. */ public static JPanel createDemoPanel() { JFreeChart chart = createChart(); return new ChartPanel(chart){ /** * */ private static final long serialVersionUID = -4857405671081534981L; private Point2D zoomPoint = null; private Rectangle2D zoomRectangle = null; private boolean fillZoomRectangle = true; private JPopupMenu popup; private Paint zoomOutlinePaint = Color.blue; private Paint zoomFillPaint = new Color(0, 0, 255, 63); public void mousePressed(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); return; } } PlotOrientation orientation = ((Zoomable)this.getChart().getPlot()).getOrientation(); System.out.println("Orientation --->> " + orientation.toString()); if(orientation == PlotOrientation.HORIZONTAL) { return; } if (this.zoomRectangle == null) { Rectangle2D screenDataArea = getScreenDataArea(e.getX(), e.getY()); if (screenDataArea != null) { this.zoomPoint = getPointInRectangle(e.getX(), e.getY(), screenDataArea); } else { this.zoomPoint = null; } } } private Point2D getPointInRectangle(int x, int y, Rectangle2D area) { double xx = Math.max(area.getMinX(), Math.min(x, area.getMaxX())); double yy = Math.max(area.getMinY(), Math.min(y, area.getMaxY())); return new Point2D.Double(xx, yy); } public void mouseReleased(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); zoomRectangle = null; return; } } if(this.getChart().getCategoryPlot().getDataset().getColumnCount() < 2) { repaint(); zoomRectangle = null; return; } if (zoomRectangle == null) { // do nothing } else { // do something here. zoom rectangle with data System.out.println("fucking........"); System.out.println("reset dataset here"); CategoryDataset dataset = this.getChart().getCategoryPlot().getDataset(); System.out.println("category count = " + dataset.getColumnCount()); System.out.println("category type = " + dataset.getRowCount()); Comparable[] rowKeys = new Comparable[dataset.getRowCount()]; rowKeys[0] = dataset.getRowKey(0); rowKeys[1] = dataset.getRowKey(1); Comparable[] columnKeys = new Comparable[dataset.getColumnCount()]; for(int i=0; i<columnKeys.length; i++) { columnKeys[i] = dataset.getColumnKey(i); } double[] endValueAxis = new double[dataset.getColumnCount()]; double[] startValueAxis = new double[dataset.getColumnCount()]; double minX = zoomRectangle.getBounds2D().getMinX(); double maxX = zoomRectangle.getBounds2D().getMaxX(); CategoryPlot plot = this.getChart().getCategoryPlot(); ChartRenderingInfo info = this.getChartRenderingInfo(); Rectangle2D dataArea = info.getPlotInfo().getDataArea(); CategoryAxis categoryaxis=this.getChart().getCategoryPlot().getDomainAxis(); for(int i=0; i<dataset.getColumnCount(); i++) { endValueAxis[i] = categoryaxis.getCategoryEnd(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); startValueAxis[i] = categoryaxis.getCategoryStart(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); } for(int i=0; i<endValueAxis.length; i++) { if(minX > startValueAxis[i] || maxX < startValueAxis[i]) { DefaultCategoryDataset defaultDataset = (DefaultCategoryDataset)dataset; defaultDataset.removeValue(rowKeys[0], columnKeys[i]); defaultDataset.removeValue(rowKeys[1], columnKeys[i]); } } } zoomRectangle = null; } public void mouseDragged(MouseEvent e) { // if no initial zoom point was set, ignore dragging... if (this.zoomPoint == null) { return; } Graphics2D g2 = (Graphics2D) getGraphics(); Rectangle2D scaledDataArea = getScreenDataArea((int) this.zoomPoint.getX(), (int) this.zoomPoint.getY()); double ymax = Math.min(e.getY(), scaledDataArea.getMaxY()); double xmax = Math.min(e.getX(), scaledDataArea.getMaxX()); this.zoomRectangle = new Rectangle2D.Double(this.zoomPoint.getX(), this.zoomPoint.getY(), xmax - this.zoomPoint.getX(), ymax - this.zoomPoint.getY()); repaint(); g2.dispose(); } public void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2 = (Graphics2D) g.create(); drawZoomRectangle(g2, false); g2.dispose(); } private void drawZoomRectangle(Graphics2D g2, boolean xor) { if (this.zoomRectangle != null) { if (xor) { // Set XOR mode to draw the zoom rectangle g2.setXORMode(Color.gray); } if (this.fillZoomRectangle) { g2.setPaint(this.zoomFillPaint); g2.fill(this.zoomRectangle); } else { g2.setPaint(this.zoomOutlinePaint); g2.draw(this.zoomRectangle); } if (xor) { // Reset to the default 'overwrite' mode g2.setPaintMode(); } } } }; } /** * Starting point for the demonstration application. * * @param args ignored. */ public static void main(String[] args) { String title = "Combined Category Plot Demo 1"; CombinedCategoryPlotDemo1 demo = new CombinedCategoryPlotDemo1(title); demo.pack(); RefineryUtilities.centerFrameOnScreen(demo); demo.setVisible(true); } }
I just adding some codes in the category demo program with JFreeChart, the code implementation need to be improved in future.
Drawback:
could not restore to original dataset since i just removed the categories, one way is to implement this like this:
just take back original dataset when there is only one category in plot.
Discussion:
...
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01