京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【gloomyfish】Box zoom on Category Plot in JFreeChart
Background:
currently JFreechart did not support domain axis zoom with category plot, the domain and value axis is zoomable only for XYPlot, however when category dataset contains huge categories while user could not select some categories to view by box zoom. the category plot is becoming un-usable one for user. obviously user would like to see box zoom with category plot.
Summary:
from box zoom on XYPlot in JFreechart, i read all relevant source code about zooming in JFreeChart and i found that there is a way to support box zoom on category plot by following steps:
a. support drawing the zoom rectangle in category data area (plot)
b. identify the domain axis and each category start point on domain axis.
c. measure the each category start point with zoom box
d. remove any categories if the start coordinate value is out of zoom rectangle.
Basic Design:
in order to support box zoom on category plot, we need to overwrite following methods which has been implemented in ChartPanel by JFreeChart:
1. mousePressed() - record the start zoom point
2. mouseDragged() - draw zoom box rectangle on category plot
3. mouseReleased() - zoom in the categories which is selected in rectangle.
4. paintComponent() - supporting to draw zoom rectangle
Run Result:
mouse selected rectangle - box zoom
zooming the rectangle
Code Implementation:
package test.it; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Paint; import java.awt.event.MouseEvent; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import javax.swing.JPanel; import javax.swing.JPopupMenu; import org.jfree.chart.ChartPanel; import org.jfree.chart.ChartRenderingInfo; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.CategoryAxis; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.plot.CategoryPlot; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.plot.Zoomable; import org.jfree.chart.renderer.category.BarRenderer; import org.jfree.data.category.CategoryDataset; import org.jfree.data.category.DefaultCategoryDataset; import org.jfree.experimental.chart.plot.CombinedCategoryPlot; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; /** * A demo for the {@link CombinedCategoryPlot} class. */ public class CombinedCategoryPlotDemo1 extends ApplicationFrame { /** * */ private static final long serialVersionUID = 8114720685282689420L; /** * Creates a new demo instance. * * @param title the frame title. */ public CombinedCategoryPlotDemo1(String title) { super(title); JPanel chartPanel = createDemoPanel(); chartPanel.setPreferredSize(new java.awt.Dimension(500, 270)); setContentPane(chartPanel); } /** * Creates a dataset. * * @return A dataset. */ public static CategoryDataset createDataset2() { DefaultCategoryDataset result = new DefaultCategoryDataset(); String series1 = "Third"; String series2 = "Fourth"; String type1 = "Type 1"; String type2 = "Type 2"; String type3 = "Type 3"; String type4 = "Type 4"; String type5 = "Type 5"; String type6 = "Type 6"; String type7 = "Type 7"; String type8 = "Type 8"; result.addValue(11.0, series1, type1); result.addValue(14.0, series1, type2); result.addValue(13.0, series1, type3); result.addValue(15.0, series1, type4); result.addValue(15.0, series1, type5); result.addValue(17.0, series1, type6); result.addValue(17.0, series1, type7); result.addValue(18.0, series1, type8); result.addValue(15.0, series2, type1); result.addValue(17.0, series2, type2); result.addValue(16.0, series2, type3); result.addValue(18.0, series2, type4); result.addValue(14.0, series2, type5); result.addValue(14.0, series2, type6); result.addValue(12.0, series2, type7); result.addValue(11.0, series2, type8); return result; } /** * Creates a chart. * * @return A chart. */ private static JFreeChart createChart() { CategoryDataset dataset2 = createDataset2(); NumberAxis rangeAxis2 = new NumberAxis("Value"); rangeAxis2.setStandardTickUnits(NumberAxis.createIntegerTickUnits()); CategoryAxis domainAxis = new CategoryAxis("Category"); CategoryPlot plot = new CategoryPlot(dataset2, domainAxis, new NumberAxis("Range"), new BarRenderer()); JFreeChart result = new JFreeChart( "Combined Domain Category Plot Demo", new Font("SansSerif", Font.BOLD, 12), plot, true); return result; } /** * Creates a panel for the demo (used by SuperDemo.java). * * @return A panel. */ public static JPanel createDemoPanel() { JFreeChart chart = createChart(); return new ChartPanel(chart){ /** * */ private static final long serialVersionUID = -4857405671081534981L; private Point2D zoomPoint = null; private Rectangle2D zoomRectangle = null; private boolean fillZoomRectangle = true; private JPopupMenu popup; private Paint zoomOutlinePaint = Color.blue; private Paint zoomFillPaint = new Color(0, 0, 255, 63); public void mousePressed(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); return; } } PlotOrientation orientation = ((Zoomable)this.getChart().getPlot()).getOrientation(); System.out.println("Orientation --->> " + orientation.toString()); if(orientation == PlotOrientation.HORIZONTAL) { return; } if (this.zoomRectangle == null) { Rectangle2D screenDataArea = getScreenDataArea(e.getX(), e.getY()); if (screenDataArea != null) { this.zoomPoint = getPointInRectangle(e.getX(), e.getY(), screenDataArea); } else { this.zoomPoint = null; } } } private Point2D getPointInRectangle(int x, int y, Rectangle2D area) { double xx = Math.max(area.getMinX(), Math.min(x, area.getMaxX())); double yy = Math.max(area.getMinY(), Math.min(y, area.getMaxY())); return new Point2D.Double(xx, yy); } public void mouseReleased(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); zoomRectangle = null; return; } } if(this.getChart().getCategoryPlot().getDataset().getColumnCount() < 2) { repaint(); zoomRectangle = null; return; } if (zoomRectangle == null) { // do nothing } else { // do something here. zoom rectangle with data System.out.println("fucking........"); System.out.println("reset dataset here"); CategoryDataset dataset = this.getChart().getCategoryPlot().getDataset(); System.out.println("category count = " + dataset.getColumnCount()); System.out.println("category type = " + dataset.getRowCount()); Comparable[] rowKeys = new Comparable[dataset.getRowCount()]; rowKeys[0] = dataset.getRowKey(0); rowKeys[1] = dataset.getRowKey(1); Comparable[] columnKeys = new Comparable[dataset.getColumnCount()]; for(int i=0; i<columnKeys.length; i++) { columnKeys[i] = dataset.getColumnKey(i); } double[] endValueAxis = new double[dataset.getColumnCount()]; double[] startValueAxis = new double[dataset.getColumnCount()]; double minX = zoomRectangle.getBounds2D().getMinX(); double maxX = zoomRectangle.getBounds2D().getMaxX(); CategoryPlot plot = this.getChart().getCategoryPlot(); ChartRenderingInfo info = this.getChartRenderingInfo(); Rectangle2D dataArea = info.getPlotInfo().getDataArea(); CategoryAxis categoryaxis=this.getChart().getCategoryPlot().getDomainAxis(); for(int i=0; i<dataset.getColumnCount(); i++) { endValueAxis[i] = categoryaxis.getCategoryEnd(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); startValueAxis[i] = categoryaxis.getCategoryStart(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); } for(int i=0; i<endValueAxis.length; i++) { if(minX > startValueAxis[i] || maxX < startValueAxis[i]) { DefaultCategoryDataset defaultDataset = (DefaultCategoryDataset)dataset; defaultDataset.removeValue(rowKeys[0], columnKeys[i]); defaultDataset.removeValue(rowKeys[1], columnKeys[i]); } } } zoomRectangle = null; } public void mouseDragged(MouseEvent e) { // if no initial zoom point was set, ignore dragging... if (this.zoomPoint == null) { return; } Graphics2D g2 = (Graphics2D) getGraphics(); Rectangle2D scaledDataArea = getScreenDataArea((int) this.zoomPoint.getX(), (int) this.zoomPoint.getY()); double ymax = Math.min(e.getY(), scaledDataArea.getMaxY()); double xmax = Math.min(e.getX(), scaledDataArea.getMaxX()); this.zoomRectangle = new Rectangle2D.Double(this.zoomPoint.getX(), this.zoomPoint.getY(), xmax - this.zoomPoint.getX(), ymax - this.zoomPoint.getY()); repaint(); g2.dispose(); } public void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2 = (Graphics2D) g.create(); drawZoomRectangle(g2, false); g2.dispose(); } private void drawZoomRectangle(Graphics2D g2, boolean xor) { if (this.zoomRectangle != null) { if (xor) { // Set XOR mode to draw the zoom rectangle g2.setXORMode(Color.gray); } if (this.fillZoomRectangle) { g2.setPaint(this.zoomFillPaint); g2.fill(this.zoomRectangle); } else { g2.setPaint(this.zoomOutlinePaint); g2.draw(this.zoomRectangle); } if (xor) { // Reset to the default 'overwrite' mode g2.setPaintMode(); } } } }; } /** * Starting point for the demonstration application. * * @param args ignored. */ public static void main(String[] args) { String title = "Combined Category Plot Demo 1"; CombinedCategoryPlotDemo1 demo = new CombinedCategoryPlotDemo1(title); demo.pack(); RefineryUtilities.centerFrameOnScreen(demo); demo.setVisible(true); } }
I just adding some codes in the category demo program with JFreeChart, the code implementation need to be improved in future.
Drawback:
could not restore to original dataset since i just removed the categories, one way is to implement this like this:
just take back original dataset when there is only one category in plot.
Discussion:
...
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22