
数据分析之_散点图_数据分析师
一:什么是散点图 - What is a scatter plot
任何数据分析的第一步是图形化曲线显示数据,根据相互关系,图形曲线被称为散点图。散点图可以表示两个变量之间真实的关系强度,关系的趋势,是否存在Outliers
二:散点图的目的是什么
ü 观察变量之间的关系,发现统计数据中是否存在问题,或者特殊值和感兴趣的数据
ü 数据是如何被离散化的
ü 通过眼睛观察是否存在Outliers
三:示例说明
一个人的肺活量和屏住呼吸时间的研究,一个人能屏住呼吸多久,一个研究者选择一组人作为研究对象,测量每个人的肺活量作为第一个变量,屏住呼吸时间作为第二个变量,研究者将使用散点图来描述数据,假设肺活量作为水平轴,屏住呼吸时间做为垂直轴。
四:代码实现
基于Java开源的数据图形显示组件-JFreeChart已经实现了离散图,只要我们提供数据即可
基于上面描述的演示如下:
五:相关性系数 correlation coefficient – R/r
Relationship Between X and Y Axis |
||
r = + 1.0 |
Strong - Positive |
As X goes up, Y always also goes up |
r = + 0.5 |
Weak - Positive |
As X goes up, Y tends to usually also go up |
r = 0 |
- No Correlation - |
X and Y are not correlated |
r = - 0.5 |
Weak - Negative |
As X goes up, Y tends to usually go down |
r = - 1.0 |
Strong - Negative |
As X goes up, Y always goes down |
本例中的r值为0.9814324978439516,显然肺活量跟屏住呼吸时间长短有很强的正相关性。
以下为源代码:
package com.dataanalysis.plots; import java.awt.Color; import javax.swing.JPanel; import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; import org.jfree.chart.ChartFactory; import org.jfree.chart.ChartPanel; import org.jfree.chart.JFreeChart; import org.jfree.chart.annotations.XYTextAnnotation; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.plot.XYPlot; import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer; import org.jfree.data.xy.DefaultXYDataset; import org.jfree.data.xy.XYDataset; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; // - http://en.wikipedia.org/wiki/Scatter_plot public class ScatterPlotDemo extends ApplicationFrame { /** * */ private static final long serialVersionUID = 1L; private static double[][] data; /** * A demonstration application showing a scatter plot. * * @param title the frame title. */ public ScatterPlotDemo(String title) { super(title); JPanel chartPanel = createDemoPanel(); chartPanel.setPreferredSize(new java.awt.Dimension(600, 400)); setContentPane(chartPanel); } private static JFreeChart createChart(XYDataset dataset) { JFreeChart chart = ChartFactory.createScatterPlot("Scatter Plot Demo", "lung capacity(ml)", "time holding breath(s)", dataset, PlotOrientation.VERTICAL, true, false, false); XYPlot plot = (XYPlot) chart.getPlot(); plot.setNoDataMessage("NO DATA"); plot.setDomainZeroBaselineVisible(true); plot.setRangeZeroBaselineVisible(true); XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) plot.getRenderer(); renderer.setSeriesOutlinePaint(0, Color.black); renderer.setUseOutlinePaint(true); // x axis NumberAxis domainAxis = (NumberAxis) plot.getDomainAxis(); domainAxis.setAutoRange(true); // Y axis NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis(); rangeAxis.setAutoRange(true); XYTextAnnotation textAnnotation = new XYTextAnnotation("R = " + calculateCoefficient(data), 370, 25); // r value textAnnotation.setPaint(Color.BLUE); textAnnotation.setToolTipText("Correlation Coefficient"); plot.addAnnotation(textAnnotation); return chart; } /** * Creates a panel for the demo (used by SuperDemo.java). * * @return A panel. */ public static JPanel createDemoPanel() { JFreeChart chart = createChart(createXYDataset()); ChartPanel chartPanel = new ChartPanel(chart); chartPanel.setPopupMenu(null); chartPanel.setDomainZoomable(true); chartPanel.setRangeZoomable(true); return chartPanel; } public static XYDataset createXYDataset() { DefaultXYDataset xyDataset = new DefaultXYDataset(); data = new double[2][12]; // x axis data - lung capacity(ml) data[0] = new double[]{400,397,360,402,413,427,389,388,405,422,411,433}; // y axis data - time holding breath(s) data[1] = new double[]{21.7,20.7,17.7,21.9,23.7,25.7,20.4,20.1,22.9,24.8,22.5,25.9}; xyDataset.addSeries("Research Data", data); System.out.println("Correlation Coefficient = " + calculateCoefficient(data)); return xyDataset; } public static double calculateCoefficient(double[][] data) { DescriptiveStatistics xDataSet = new DescriptiveStatistics(); for(int i=0; i<data[0].length; i="" xdataset="" descriptivestatistics="" ydataset="new" descriptivestatistics="" for="" i="0;" i="" i="" ydataset="" double="" n="yDataSet.getValues().length;" double="" xysum="0.0d;" double="" xpowsum="0.0d;" double="" ypowsum="0.0d;" for="" i="0;" i="" i="" xysum="" xdataset="" ydataset="" xpowsum="" math="" ypowsum="" double="" s1="xySum" -="" ydataset="" double="" xs="xPowSum" -="" double="" ys="yPowSum" -="" double="" s2="Math.sqrt(xS" ys="" return="" s2="" starting="" point="" for="" the="" demonstration="" application="" args="" ignored="" public="" static="" void="" main="" args="" scatterplotdemo="" demo="new" scatterplotdemo="" plot="" demo="" demo="" refineryutilities="" demo=""> </data[0].length;>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18