京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss二分类的logistic回归的操作和分析方法
二分类指的是因变量的数据只有两个值,代表事物的两种类别,典型的二分类变量如性别、是否患病等。因变量为二分变量原则上是无法做回归的,在回归方程中的因变量实质上是概率,而不是变量本身。在理解二分类变量以后,我们看看如何做二分类变量的logistic回归。
工具/原料
spss20.0
方法/步骤
1
打开数据以后,菜单栏上依次点击:analyse--regression--binary logistic,打开二分回归对话框
2
将因变量和自变量放入格子的列表里,如图所示,上面的是因变量,下面的是自变量,我们看到这里有三个自变量

设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法,在前面的文章中有介绍,这里就不再熬述。

点击ok,开始处理数据并检验回归方程,等待一会就会弹出数据结果窗口

看到的第一个结果是对case的描述,第一个列表告诉你有多少数据参与的计算,有多少数据是缺省值;第二个列表告诉你因变量的编码方式,得分为1代表患病,得分为0代表没有患病

这个列表告诉你在没有任何自变量进入以前,预测所有的case都是患病的正确率,正确率为%52.6

下面这个列表告诉你在没有任何自变量进入以前,常数项的预测情况。B是没有引入自变量时常数项的估计值,SE它的标准误,Wald是对总体回归系数是否为0进行统计学检验的卡方。

下面这个表格结果,通过sig值可以知道如果将模型外的各个变量纳入模型,则整个模型的拟合优度改变是否有统计学意义。 sig值小于0.05说明有统计学意义

这个表格是对模型的全局检验,为似然比检验,供给出三个结果:同样sig值<0.05表明有统计学意义。

下面的结果展示了-2log似然值和两个伪决定系数。两个伪决定系数反应的是自变量解释了因变量的变异占因变量的总变异的比例。他们俩的值不同因为使用的方法不同。

分类表,这里展示了使用该回归方程对case进行分类,其准确度为%71.8。

最后是输出回归方程中的各变量的系数和对系数的检验额值,sig值表明该系数是否具有统计学意义。到此,回归方程就求出来了。

END
经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27