到底该使用哪一种大数据编程语言:R、Python、Scala和Java
说到处理大规模数据,R、Python、Scala和Java基本上都能满足你的要求。
你有一个大数据项目,你知道问题领域(problem domain),也知道使用什么基础设施,甚至可能已决定使用哪种框架来处理所有这些数据,但是有一个决定迟迟未能做出:我该选择哪种语言?(或者可能更有针对性的问题是,我该迫使我的所有开发人员和数据科学家非要用哪种语言?)这个问题不会推迟太久,迟早要定夺。
当然,没有什么阻止得了你使用其他机制(比如XSLT转换)来处理大数据工作。但通常来说,如今大数据方面有三种语言可以选择:R、Python和Scala,外加一直以来屹立于企业界的Java。那么,你该选择哪种语言?为何要选择它,或者说何时选择它?
下面简要介绍了每种语言,帮助你做出合理的决定。
R
R经常被称为是“统计人员为统计人员开发的一种语言”。如果你需要深奥的统计模型用于计算,可能会在CRAN上找到它――你知道,CRAN叫综合R档案网络(Comprehensive R Archive Network)并非无缘无故。说到用于分析和标绘,没有什么比得过ggplot2。而如果你想利用比你机器提供的功能还强大的功能,那可以使用SparkR绑定,在R上运行Spark。
然而,如果你不是数据科学家,之前也没有用过Matlab、SAS或OCTAVE,可能需要一番调整,才能使用R来高效地处理。虽然R很适合分析数据,但是就一般用途而言不太擅长。你可以用R构建模型,但是你需要考虑将模型转换成Scala或Python,才能用于生产环境,你不太可能使用这种语言编写一种集群控制系统(运气好的话,你可以对它进行调试)。
Python
如果你的数据科学家不使用R,他们可能就会彻底了解Python。十多年来,Python在学术界当中一直很流行,尤其是在自然语言处理(NLP)等领域。因而,如果你有一个需要NLP处理的项目,就会面临数量多得让人眼花缭乱的选择,包括经典的NTLK、使用GenSim的主题建模,或者超快、准确的spaCy。同样,说到神经网络,Python同样游刃有余,有Theano和Tensorflow;随后还有面向机器学习的scikit-learn,以及面向数据分析的NumPy和Pandas。
还有Juypter/iPython――这种基于Web的笔记本服务器框架让你可以使用一种可共享的日志格式,将代码、图形以及几乎任何对象混合起来。这一直是Python的杀手级功能之一,不过这年头,这个概念证明大有用途,以至于出现在了奉行读取-读取-输出-循环(REPL)概念的几乎所有语言上,包括Scala和R。
Python往往在大数据处理框架中得到支持,但与此同时,它往往又不是“一等公民”。比如说,Spark中的新功能几乎总是出现在Scala/Java绑定的首位,可能需要用PySpark编写面向那些更新版的几个次要版本(对Spark Streaming/MLLib方面的开发工具而言尤为如此)。
与R相反,Python是一种传统的面向对象语言,所以大多数开发人员用起来会相当得心应手,而初次接触R或Scala会让人心生畏惧。一个小问题就是你的代码中需要留出正确的空白处。这将人员分成两大阵营,一派觉得“这非常有助于确保可读性”,另一派则认为,2016年,我们应该不需要就因为一行代码有个字符不在适当的位置,就要迫使解释器让程序运行起来。
Scala
现在说说Scala:在本文介绍的四种语言中,Scala是最轻松的语言,因为大家都欣赏其类型系统。Scala在JVM上运行,基本上成功地结合了函数范式和面向对象范式,目前它在金融界和需要处理海量数据的公司企业中取得了巨大进展,常常采用一种大规模分布式方式来处理(比如Twitter和LinkedIn)。它还是驱动Spark和Kafka的一种语言。
由于Scala在JVM里面运行,它可以立即随意访问Java生态系统,不过它也有一系列广泛的“原生”库,用于处理大规模数据(尤其是Twitter的Algebird和Summingbird)。它还包括一个使用非常方便的REPL,用于交互式开发和分析,就像使用Python和R那样。
我个人非常喜欢Scala,因为它包括许多实用的编程功能,比如模式匹配,而且被认为比标准的Java简洁得多。然而,用Scala来开发不止一种方法,这种语言将此作为一项特色来宣传。这是好事!不过考虑到它拥有图灵完备(Turing-complete)的类型系统和各种弯弯曲曲的运算符(“/:”代表foldLeft,“:\”代表foldRight),很容易打开Scala文件,以为你看到的是某段讨厌的Perl代码。这就需要在编写Scala时遵循一套好的实践和准则(Databricks的就很合理)。
另一个缺点是,Scala编译器运行起来有点慢,以至于让人想起以前“编译!”的日子。不过,它有REPL、支持大数据,还有采用Jupyter和Zeppelin这一形式的基于Web的笔记本框架,所以我觉得它的许多小问题还是情有可原。
Java
最终,总是少不了Java――这种语言没人爱,被遗弃,归一家只有通过起诉谷歌才有钱可赚时才似乎关心它的公司(注:Oracle)所有,完全不时髦。只有企业界的无人机才使用Java!不过,Java可能很适合你的大数据项目。想一想Hadoop MapReduce,它用Java编写。HDFS呢?也用Java来编写。连Storm、Kafka和Spark都可以在JVM上运行(使用Clojure和Scala),这意味着Java是这些项目中的“一等公民”。另外还有像Google Cloud Dataflow(现在是Apache Beam)这些新技术,直到最近它们还只支持Java。
Java也许不是摇滚明星般备受喜爱的首选语言。但是由于研发人员在竭力理清Node.js应用程序中的一套回调,使用Java让你可以访问一个庞大的生态系统(包括分析器、调试器、监控工具以及确保企业安全和互操作性的库),以及除此之外的更多内容,大多数内容在过去二十年已久经考验(很遗憾,Java今年迎来21岁,我们都老矣)。
炮轰Java的一个主要理由是,非常繁琐冗长,而且缺少交互式开发所需的REPL(R、Python和Scala都有)。我见过10行基于Scala的Spark代码迅速变成用Java编写的变态的200行代码,还有庞大的类型语句,它们占据了屏幕的大部分空间。然而,Java 8中新的Lambda支持功能对于改善这种情况大有帮助。Java从来不会像Scala那么紧凑,但是Java 8确确实实使得用Java进行开发不那么痛苦。
至于REPL?好吧,目前还没有。明年推出的Java 9会包括JShell,有望满足你的所有REPL要求。
哪种语言胜出?
你该使用哪种语言用于大数据项目?恐怕这还得“视情况而定”。如果你对晦涩的统计运算进行繁重的数据分析工作,那么你不青睐R才怪。如果你跨GPU进行NLP或密集的神经网络处理,那么Python是很好的选择。如果想要一种加固的、面向生产环境的数据流解决方案,又拥有所有重要的操作工具,Java或Scala绝对是出色的选择。
当然,不一定非此即彼。比如说,如果使用Spark,你可以借助静态数据,使用R或Python来训练模型和机器学习管道(pipeline),然后对该管道进行序列化处理,倒出到存储系统,那里它可以供你的生产Scala Spark Streaming应用程序使用。虽然你不应该过分迷恋某一种语言(不然你的团队很快会产生语言疲劳),使用一套发挥各自所长的异构语言也许会给大数据项目带来成效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03