京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据新闻最常见的四大问题
人们通常觉得数据新闻从本质上就比其它类型的报道更客观。数字不会说谎,对吧?
错了。
和数据打交道时,有太多办法可以欺骗受众,甚至误导自己,这些错误甚至可能是无心之失。过去一年研究数据新闻的第一手经验让我发现,要犯一些最终导致结论完全歪曲的错误实在是太容易了。以下便是过去这一年里我所遇到的糟糕的数据新闻最常见的四大问题:
1. 缺乏上下文或比例系数
没有语境的数字是没有意义的。缺乏背景信息的问题在有关财政支出的新闻中尤其明显,其它类型的报道中这种错误也经常蹦出来。
举个例子:
“纳税人花费十亿美元为非法移民儿童买单”、“福利津贴花掉64亿英镑”——这些天文数字组成的标题听上去让人愤慨不已。但事实是,公共支出数据常常都是天文数字,把数据放到上下文里看,分解到每个人头上,你会发现这些数字可能是完全合理的。
这个故事告诉我们?比例系数通常比绝对数值更有内涵。但比例系数也并不总是最正确的呈现方式。从你的数据出发,想想有什么办法能够最忠实的呈现它。
卫报(The Guardian)数据新闻记者James Ball建议所有数据新闻记者汇总一些基本的数字,既避免犯初级错误,也更容易一眼看出数据和结论是否合理,比如全国处于工作年龄段的人有多少、平均工资、就业率等。这不失为一种办法。
2. 相关性不等于因果关系
只要你懂哪怕一点点统计学,你应该知道,相关性和因果关系是两个截然不同的东西。
然而,这一点却总是被新闻编辑室的人忽略。不要仅仅因为刚好有两个变量呈现相关性,就以为你有了条独家新闻。这种相关性完全有可能是其它一些潜在变量引起的,又或者,纯属巧合。
比如下图:
IE浏览器的市场份额 VS 美国谋杀率数据(图片来自Gizmodo)
这张图中IE浏览器的市场份额与美国谋杀率的关系是我最爱的例子之一-它们俩的超高相关性是不是看上去容易让人迷惑?想了解更多具有欺骗性的相关性,可以上这个名叫“伪相关”(Spurious Correlations)的网站看看(别怪我害你在那儿流连忘返浪费了一整个下午!)
3. 不知道怎样把数据可视化
这个问题值得专门写一篇文章,甚至好几篇文章,不过这里我只能点到为止。
好不容易,你做完了数据分析,挖出了一条大新闻,但一个差劲的视觉化呈现就能让你前功尽弃。糟糕的可视化可能会让读者产生疑问,甚至可能误导他们。比如,请不要这样……
(图片来自Business Insider)
不要用线形图表 (line chart) 表现离散数据,更不要去尝试那些看上去炫酷的3D饼状图,有可能你还在参与那场关于到底能否截短Y轴的永恒辩论。
数据可视化是艺术,更是科学。这里有一些好的指导书和网站,教你如何避免这些可视化中的潜在陷阱:
The Functional Art, by Alberto Cairo
Data Visualization – Principles and Practice, by Alexandru Telea
VisualisingData.com
4. 忽略文字叙述
在我看来,这是最重要的一点:
数据新闻给了我们以量化方式探索某个话题的力量,但它仍是新闻的一种,也就是说,它的本质还是storytelling(讲故事)。如果你只是扔出一堆随机数字,那你并没有做好这项工作。数据及其呈现只是一个开端,你要引导你的读者,讲完这个故事。你要让他们理解为什么那些数字如此重要,它们代表了什么。正如数据记者Tanveer Ali在《哥伦比亚新闻评论》(Columbia Journalism Review)中所说:
![]()
“数据是讲故事的一种方式,而非故事本身。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26