
怎样才能正确利用数据来抓住目标用户?
运营人员通常比较关心的一个问题是:用什么样的方法来重新获取已经流失的用户?今天我们来谈谈有哪些关键的指导策略,怎样才能正确利用数据来抓住你的目标用户?
一般情况下,当运营人员谈到重新获取用户的方法时,通常指的是策划一些活动通过消息推送的方式来激励那些已经流失的用户,使他们重新回来。但这个大家都在用的方法一般都得不到好的效果,为什么呢?原因在于他们是在“战役失败”了以后才采取措施。
当你发现用户流失后,会不顾一切的策划活动。比如:一个很大的折扣或者某些促销手段,但往往换来的是那些给你带来利润最少和维护成本最高的用户。结果证明:这是一个失败的策略。一旦你的应用被用户“打入冷宫”,几乎没有办法唤醒这些流失的用户。你需要做的是,在用户流失之前就抓住他们。这才是正确的选择。
某App新增用户留存数据:第2天和第5天用户留存率较低
那么问题来了,怎样才能留住更多的用户并防止他们流失呢?这就需要应用在每次和用户的交互过程中,能更进一步的了解他们的需求,提升他们的体验,提高用户的满意度。这听起来也许并不复杂,但要真正做好也并不容易,不过总结下来,真正需要做的就是聪明地利用好你的用户行为数据。那么具体如何做?
以下我们给出了4点建议,能够确保你把劲使在了对的地方:
如果花点心思,你就会从你的用户行为数据中发现:有明显的迹象显示用户目前处于什么样的阶段。这需要你观察发现,分析决策并且去行动。其中一个方法是使用用户的生命周期法,定义用户处于一个什么样的生命阶段,在这个阶段中去分析。
首先,针对你的产品业务,整理出用户的生命周期分成哪几个阶段,可以根据你的需要划分得足够细致。比如可以分成:
早期刚进入的阶段
被吸引的阶段
处于流失风险的阶段
流失了的阶段。
然后,你需要定义清楚每个阶段用户是什么样的。
例如:对于电商类应用,早期刚进入的阶段,可以定义为一个用户在他首次购买后15天内的阶段。一个被吸引的用户阶段,可以定义为该用户有至少三次购买或者在一周内访问你的应用超过了10次。另外要确保你对用户生命周期的分类是一个闭环状态,在特定的时间,每个用户都只处于一个阶段,这是用户生命周期得以实行的必要条件。
在定义了不同的用户生命周期阶段之后,你要有可以用来建立用户分类的行为数据。对比一个处在被吸引阶段的用户和一个处于流失风险的用户之间本质上有哪些区别,据此来建立数据模型。搞清楚这些,对用户生命周期每个阶段的建模至关重要。
通过数据识别出哪些用户对你的产品满意,分析他们的行为数据,这些分析结果对于策划营销活动,做精细化运营有着方向性的指导意义。严格的定义加上可以衡量的行为,就可以给用户打标签并分类进行画像,并且能够知道那些处于流失风险的客户需要你做出什么样的决策来进行挽回。
怎么区分一个好的用户和一个坏的用户?那些让你赚到最多钱的用户与那些实际上花掉你钱和资源的用户,哪个是好的哪个是坏的?要分清这些,首先要确立一个平均的用户终生价值,再结合维护不同用户的成本,并将成本整合到他的用户价值中去。
举个例子:有一些用户,他们重度消费了你们的免费支持服务,有些用户令你花费时间去处理很多但很没有必要的数据。把成本考虑进去能帮助你提高划分结果的准确性,并且能够保证哪些是你所关注的、想要留住的目标用户。你也可以增加一些生命周期的阶段来匹配那些利润相对较低的用户,并针对这一人群策划一些营销方案,精准化运营。考虑到他们的终生价值,你也可以直接把他们从你策划的某次活动中去除。
有些你认为很好的运营方案很可能会造成用户的流失。那么如何防止这样的事情发生?这就需要避免只依赖于活动的指标来衡量活动的成功与否,而应该全方位综合来考虑。试想这样一种场景:你策划了一次活动并通过消息推送通知了全部用户,立马发现了转化率的大幅度提高,购买增长,于是你觉得这次活动运营很成功,并且准备继续推行这个方法。但事实上,这次活动反而导致部分用户取消了消息推送功能,甚至卸载了app。这正是在你采取这项推广活动时发生的,你没有考虑用户的全局信息,没有对他们区别对待,不明确他们和你的品牌的关系,这是冒着牺牲未来的风险换来的蝇头小利。
这时就需要对用户进行精细化运营,应该将用户的整个生命时期考虑进来,衡量并跟踪用户在每个时期的情况,而不是只关注活动实行后的立刻的变化。你可以这么做,把用户分成两部分,一部分用户不对他们做任何推送,而对另一部分用户实行活动推送,定期地比较这两组用户的价值。对于关注长期的用户留存和用户参与度有很大的帮助。
我们正在一步步地进入到数据驱动决策的运营时代,以后将会很少见到类似赢回流失用户这样的的策略,更多的是提高用户留存率以及活跃度,策划如何驱动用户真正价值的推广活动。运用户生命周期的框架并不是新提出来的,但做到这些的前提是我们能够准确收集到用户的行为数据,只有这样才能将它成熟地运用起来。如果在你的运营工作中做到以上几点,你将会更了解你的用户,知道哪些用户值得你投入,将你的资源发挥最大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27