
大数据也需要冷处理
在大数据热潮的背后,企业需要持冷静的态度,在应用大数据的时候,也要对业务基础以及技术基础进行研究,保证大数据在企业中可以持续的发展下去,大数据的应用必须要持续化,才能产生持续的价值,大数据热的时代背景下,企业也需要对大数据进行冷处理。
企业应用大数据的过程中需要有热情,特别是管理层,只有热情才能做好企业的大数据铺垫,让企业的用户都参与大数据的应用过程,但是同时也是要注意对基础的研究,业务上以及技术上的支持,如果对业务流程不熟悉,技术支持不到位的话,那么及时企业使用了大数据,也是不会产生该有的效果,对于大数据的开发商也是,必须要转变原有的技术认识,在技术研发以及产业的推动上话花费更多的心思。
大数据秉承的就是用数据说话的一种模式,这些数据数量大、结构多样,使用更加科学的方法和方式将经验数据化,预测规律化,将大数据应用在企业的运营过程中。社会上也有很多声音在呼吁将大数据和政府的政策领导、社会的需求、技术的支持等进行整合,形成大数据发展的体系,这样的大数据才能更好的为企业服务。相关的体系和政策是要形成,但是现阶段的大数据还是处于企业单独进行的程度,如果可以形成统一的发展体系,也不乏是一种更好的方式。
企业在实施大数据的过程中,要弄清楚自身是不是已经具备解读大数据的能力,想要使用大数据技术达到什么样的目标,才能有关键性的突破,大数据需要各个方面的协同合作,企业在使用大数据的过程中,不能是一头热,要先弄清楚自己的业务以及技术能力是不是已经达到一定的标准,使用大数据的过程中,要让大数据融入到企业的日常运营过程中,而不是只是购买了一个软件,放在技术部门,想要用的时候再拿出来使用。
大数据理论现阶段在国内的发展还不是很成熟,在国外大数据已经相对发展的比较快的前提下,国内在学习的同时,也要学会对大数据热进行冷处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10