京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据误区你知多少?不是越大越好
随着云时代的来临,大数据也吸引了越来越多的关注。在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。从IT界到、金融界,再到物流界、营销界,乃至医疗界、教育界,无论是界内界外人士几乎都已快形成“言必称云”、“言必称大数据”的口头禅。
大数据误区你知多少?不是越大越好
但如果真遇到一个“较真儿的”,发出这样的提问——到底什么是大数据?大数据到底有什么价值?我怎样才能得到大数据价值?是那头黄色的Hadoop小象?是动辄XXXBIT的高大上数据量?又或者是千万级别的用户信息?那估计很多口口声声不离大数据的人可能都言语含糊解释不清了。
那么,到底该如何来看待大数据呢?专家冯晓杰表示,大数据单从字面意思似乎不难理解,可以认为是海量级的数据,但是在这海量级的数据究竟意味着什么,这在很多业内外人士的概念里还纯在着一些认识误区。
大数据误区一:只要大就好
如今,很多人提起大数据,如果不提上几嘴“日处理数据量XXGB,上传图片XXGB,并发数XXX”“Hadoop集群拥有XXXX节点,总存储XXPB”诸如此类的技术语言,都很怕别人觉得自己不专业。但是,难道真的只有数据大了,才能达到大数据的登峰境界?才能数人合一地达成大一统的目的?
冯晓杰表示,数据如果仅仅是大那是没多大用处的!就好像资金的意义在于如何使用周转一样,数据大了,但不使用,让它孤零零地偏安机房一隅,那它就不是大数据了,而是有点“败家子”的意思。
比如不少传统的门户网站,基本上就处于“坐拥金山却无福消费”的境况。每天上亿的用户量,却只是简单的广告呈现,没有通过对数据的分析产生更多价值。
大数据误区二:只有技术大牛才懂大数据
虽然很多人口口声声离不开大数据,但是真问他到底懂多少时,其中一部分人可能会说:“我就是懂些皮毛,真正技术层面的大数据我也不懂,你还是问那些技术大牛去吧,他们才真懂。”
冯晓杰表示,其实这样的观点并不全对。比如诸葛亮很懂兵法,他知道该在哪里摆阵,该在哪里伏兵。但是,他不必知道关羽是如何耍大刀,也不必知道张飞的丈八蛇矛在打仗时是扎还是砍。
其实,对于大数据的应用更多的是一种战略能力,而非细节的执行技能,这种能力是可以帮助决策者能从无尽的数据里看出商机看出价值,从而为企业带来更高的利润。而作为决策者并不用太关心在技术细节层面,大数据到底怎么技术生成,又是如何理顺提升用户体验的。
大数据误区三:是个公司都得上大数据
冯晓杰表示,虽然大数据固然是个香饽饽,但不是所有人都能消化得了,或者说并不是所有都有上大数据的必要,而是要衡量企业的现状,看清楚主次矛盾,或是要考量好投入产出的回报率,大数据并不是适合所有企业的现状。
比如,对于中小型网站来说,一上来就盲目追求先进“高大上”的技术架构,那就有点“宰牛刀杀鸡”的意思。对于这类网站,首要考虑的是商业运作模式和推广,只有等到用户量飚升后,再去考虑技术升级这种大事儿。
再比如,在GMIC上,Evernote的CEO Phil Libin就明确表明不带大数据一起玩儿,自己产品的商业模式就是向用户收费,让他们甘心为产品体验付费。
冯晓杰举例表示,如同一个双选题:A.日登陆用户1000人,架构完全参照美国亚马逊从不宕机;B.日登陆用户10万人,每天因为高并发不得不宕机三次。你会选什么?
大数据误区四:我就要海量数据
自从大数据概念火了以后,不少企业在遇到问题的时候,总是会情不自禁的就会想到“是不是我的数据量不够?”“是不是如果有了海量的大数据就能变得更好?”其实,这又是陷入了一个误区。
这又回到了大数据价值和金钱价值的类比概念上。比如用搜索引擎搜索一下“存款贬值”,那么很快就可以发现类似这样的信息:“五十年前的百万变13块”,“一万元存一年赔19元”,显然,不流动的钱,是越放越没有价值,而基数越大,可能导致的损失就越大。
金钱如此,大数据亦然。只有像比特币玩家们一样,不停地使用数据,并以无比的热情挖掘数据背后的关系和价值,才能如滚雪球一般,使数据之间的相互关系更丰富更完善。同理,对于企业的大数据来说,只有充分利用大数据,让大数据充分流动起来,不断的实现增值效果,那么才有机会更大的释放大数据的能量。
因此,冯晓杰指出,对于企业决策者来说,看待大数据必须有一个清醒的认识,当在脑袋发热准备花大价钱上大数据之前,都一定得先想明白透彻了:“我真的需要大数据吗?大数据真的能为我所驾驭吗?”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31