
大数据误区你知多少?不是越大越好
随着云时代的来临,大数据也吸引了越来越多的关注。在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。从IT界到、金融界,再到物流界、营销界,乃至医疗界、教育界,无论是界内界外人士几乎都已快形成“言必称云”、“言必称大数据”的口头禅。
大数据误区你知多少?不是越大越好
但如果真遇到一个“较真儿的”,发出这样的提问——到底什么是大数据?大数据到底有什么价值?我怎样才能得到大数据价值?是那头黄色的Hadoop小象?是动辄XXXBIT的高大上数据量?又或者是千万级别的用户信息?那估计很多口口声声不离大数据的人可能都言语含糊解释不清了。
那么,到底该如何来看待大数据呢?专家冯晓杰表示,大数据单从字面意思似乎不难理解,可以认为是海量级的数据,但是在这海量级的数据究竟意味着什么,这在很多业内外人士的概念里还纯在着一些认识误区。
大数据误区一:只要大就好
如今,很多人提起大数据,如果不提上几嘴“日处理数据量XXGB,上传图片XXGB,并发数XXX”“Hadoop集群拥有XXXX节点,总存储XXPB”诸如此类的技术语言,都很怕别人觉得自己不专业。但是,难道真的只有数据大了,才能达到大数据的登峰境界?才能数人合一地达成大一统的目的?
冯晓杰表示,数据如果仅仅是大那是没多大用处的!就好像资金的意义在于如何使用周转一样,数据大了,但不使用,让它孤零零地偏安机房一隅,那它就不是大数据了,而是有点“败家子”的意思。
比如不少传统的门户网站,基本上就处于“坐拥金山却无福消费”的境况。每天上亿的用户量,却只是简单的广告呈现,没有通过对数据的分析产生更多价值。
大数据误区二:只有技术大牛才懂大数据
虽然很多人口口声声离不开大数据,但是真问他到底懂多少时,其中一部分人可能会说:“我就是懂些皮毛,真正技术层面的大数据我也不懂,你还是问那些技术大牛去吧,他们才真懂。”
冯晓杰表示,其实这样的观点并不全对。比如诸葛亮很懂兵法,他知道该在哪里摆阵,该在哪里伏兵。但是,他不必知道关羽是如何耍大刀,也不必知道张飞的丈八蛇矛在打仗时是扎还是砍。
其实,对于大数据的应用更多的是一种战略能力,而非细节的执行技能,这种能力是可以帮助决策者能从无尽的数据里看出商机看出价值,从而为企业带来更高的利润。而作为决策者并不用太关心在技术细节层面,大数据到底怎么技术生成,又是如何理顺提升用户体验的。
大数据误区三:是个公司都得上大数据
冯晓杰表示,虽然大数据固然是个香饽饽,但不是所有人都能消化得了,或者说并不是所有都有上大数据的必要,而是要衡量企业的现状,看清楚主次矛盾,或是要考量好投入产出的回报率,大数据并不是适合所有企业的现状。
比如,对于中小型网站来说,一上来就盲目追求先进“高大上”的技术架构,那就有点“宰牛刀杀鸡”的意思。对于这类网站,首要考虑的是商业运作模式和推广,只有等到用户量飚升后,再去考虑技术升级这种大事儿。
再比如,在GMIC上,Evernote的CEO Phil Libin就明确表明不带大数据一起玩儿,自己产品的商业模式就是向用户收费,让他们甘心为产品体验付费。
冯晓杰举例表示,如同一个双选题:A.日登陆用户1000人,架构完全参照美国亚马逊从不宕机;B.日登陆用户10万人,每天因为高并发不得不宕机三次。你会选什么?
大数据误区四:我就要海量数据
自从大数据概念火了以后,不少企业在遇到问题的时候,总是会情不自禁的就会想到“是不是我的数据量不够?”“是不是如果有了海量的大数据就能变得更好?”其实,这又是陷入了一个误区。
这又回到了大数据价值和金钱价值的类比概念上。比如用搜索引擎搜索一下“存款贬值”,那么很快就可以发现类似这样的信息:“五十年前的百万变13块”,“一万元存一年赔19元”,显然,不流动的钱,是越放越没有价值,而基数越大,可能导致的损失就越大。
金钱如此,大数据亦然。只有像比特币玩家们一样,不停地使用数据,并以无比的热情挖掘数据背后的关系和价值,才能如滚雪球一般,使数据之间的相互关系更丰富更完善。同理,对于企业的大数据来说,只有充分利用大数据,让大数据充分流动起来,不断的实现增值效果,那么才有机会更大的释放大数据的能量。
因此,冯晓杰指出,对于企业决策者来说,看待大数据必须有一个清醒的认识,当在脑袋发热准备花大价钱上大数据之前,都一定得先想明白透彻了:“我真的需要大数据吗?大数据真的能为我所驾驭吗?”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03