
预测未来,最忌参考过去
如今我们做大量预测,Forrester 这种调研公司尤其喜欢通过图表预测设备销量、媒体广告支出,认为任何可量化的东西,它都可以被预测。这些预测报告通常有些常见模板,比如:
“今年,我们位于 X 轴的中心”、“我们可以看到在这个日期前有 3 个数据点”、“我们可以看到未来 X 年内,会有一个完美的线性发展趋势。”但是没人知道这有多蠢吗?
无广告社交项目 Ello 推出后不久,已经有人在预测它的用户数会“超过地球人口”。然后用同样方法,预测 2009 年美国智能手机销量,得到结论也相似,或者去预测移动端广告支出,他们可以傻到一直这么做。
不信?可以看看这些显著案例。
到底是什么让我们如此肯定: 2016 年搜索营销价值会接近 100 万美元?
有预测认为:2020 年食品和饮料在电子商务中只占很小份额。它完全不考虑那时人们生活可能是什么样,或者会有什么新行业或新技术出现。
我最喜欢的一张蠢成这样的图是下面这个,它蠢到没搞清楚我们现在是在几几年(图表中说我们现在身处 2015 年)。接下来是什么?预测无人驾驶汽车销量?或者 4D 打印机?还是智能机器人助理?
而你知不知道他们从不使用的图表?我们来把他们预测的和实际情况做下比较,真实的图表是下面这样的:
如上图,诺基亚一直做得很好,直到开始表现不佳。
如上图,音乐产业总是面对翻天覆变化,但现在开始直线下滑。
如上图,最生动的是印刷广告业的衰落。
当然,以上这些不是说 Forrester 很蠢或这些图表一文不值,只是说,真正的问题在于:未来其实很难预测,因为“未来”它从不是线性发展的。事实上,这个时代的一个关键要素是:事物有快速变化趋势。它可能是 Airbnb 在房屋租赁市场异军突起,可能是 Uber 改变人们出行方式,或是特斯拉在电动汽车领域掀起革命,或是 Apple pay 重塑支付行业。实际上,现实发展比我们想象的更快。
同时,不是所有事都在变,比如我点一杯咖啡的方式和十年前没什么不同;再比如我买衣物柔顺剂也一样,而银行模样,和 25 年前一样。
这其中,还有些事是周期性的,比如我们可能认为中国有史以来第一次变富,但历史表明:它一度是主要世界经济体。而还有很多事,它完全不受过去束缚,比如我现在把 Twitter 作为浏览器主页,没选择雅虎。我现在无休止看手机,无论何时我都在用非接触方式“使用”它。智能手机的崛起渐渐改变我们行为方式,产品不断数字化塑造全新的所有权模式,许多作为中间环节的行业已经快要消失,而新兴企业在网络效应下呈指数增长。许多事物的变化越来越快越来越快。
那面对这种变革,我们要做的,就不仅仅是根据历史演进做预测,而应该:
理解哪些事物发生了变化,哪些保持不变。
从足够远的过去学习,不要以为时间越近就越具参考价值,应该在更长的时间尺度发现相似案例。
做艺术化、移情预测,预测什么“现实”可能发生,而这些预测是基于想象力及已经定义边界后的“合理性”(based on imagination and defining edges to plausibility)。
其实我们很难说“将来”会是什么样,包括竞争对手的活动,新产品、新应用、新技术、世界经济、新规则、新商业模式都可能出现。但我们去对事情本身做“肠道检查”却没那么难,我们可以很容易排除一些事,并依次对另一些事做假设,设定一些可能场景,然后推断其合理性。
这样做可能不完美,但比那些预测未来的随机线条更可能正确,它建立我们对预测结果的一定程度的信心。
有人说,历史是伟大的老师,但事实真是如此吗?难道因为以前不流行六度空间理论,Facebook 就该放弃它的事业?难道我们应该向 WebVan 学习,就不去尝试电子商务?WebTV 彻底失败,Netflix 却大获成功。历史还告诉过我们,人们不信 4 分钟内可以跑一英里,认为背越式跳高不值得考虑,触屏手机无法正常工作。
所以也许对更大块的东西来说,“历史”是个更显得蹩脚的老师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23