京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下 用户数据不可一概而论
现如今,大数据已经成为这个时代的统治者,大数据时代,也是物联网的时代,随着云存储和云计算的发展,以智能手机、智能家电、可穿戴设备为代表的智能终端的普及,通过各种智能终端上传和收集的用户数据将越来越多,对用户数据的分析和挖掘及利用,将是大数据的商业价值所在,蕴藏和巨大价值的用户数据的性质及使用规则是我们值得思考的问题。
用户数据的“区分所有权”构想
提到用户数据,我们首先想到的是用户的“隐私权”。民法大家王利明教授在其主编的《人格权法新论》一书中提到:隐私权是自然人享有的对其个人的与公共利益无关的个人信息、私人活动和私有领域进行支配的一种人格权。可见隐私权是一项“个体”权益,强调权利的身份和人格的属性。
用户数据的商业价值核心并不是“个人”的人格权益,其必要条件是具备足够多的用户个体样本,其更强调“集合”的权利,单个用户数据的商业价值是有限的。而用户数据的核心价值在于通过对云端存储的海量的用户个人状况、行为、需求的样本分析和挖掘,一方面为上游硬件商提供产品的开发依据,另一方面对用户的消费、生活提供“量身打造”的服务,从而形成物联网的全产业链循环,实现更高效的管理社会资源并创造更多的价值。
可见,虽然用户数据来源于“个体”数据,但最终使社会获益的是用户的“集合”数据。因此,在界定用户数据的性质方面,笔者建议根据单个数据是否具有身份属性,将用户数据分为身份数据和样本数据,并对这两类数据加以区别保护。
用户的身份数据是指可以通过单一的个体数据,即能锁定特定用户的数据。如姓名、身份证号、各种账号信息、联系方式等。比如我们通过一个电话,就能联系到一个特定的用户。因此,此类信息具有较强的身份属性,须定义为“隐私权”的范围,其权利主体应为用户个人所有,其使用和经营,须经过用户的许可,否则将被判定为侵权。现行法律法规如《全国人民代表大会常务委员会关于加强网络信息保护的决定》、工信部出台的《电信和互联网用户个人信息保护规定》以及消费者权益保护法、《网络交易管理办法》中规定的个人信息,当属于用户的身份数据范畴。
样本数据是指通过个体数据汇聚成的用户个人状况、行为、需求的数据库以及通过分析和挖掘以上数据获得的相关数据。此类数据的所有权应为用户和数据收集方共有,但经营使用权建议应掌握在能够发挥其价值的数据收集者手中。将所有权和经营权区分开来,既能从法律上保证用户的个体权益,又符合经济学的原理。
样本数据的经营规则
用户身份数据的使用规则可以依据现有的法律法规执行。我们仅需要通过立法明确以上法律所适用的数据的范围,并在执行层面的政策上制定可操作的保护用户身份数据和隐私权的规章制度。
对于样本数据的使用和经营规则,现有法律并没有明确依据。根据上文的阐述,笔者已将其所有权拟定为用户和数据收集者共有,经营使用权则建议应掌握在能够发挥其价值的数据收集者手中。这样设计的目的在于,一是保留用户的“被遗忘权”;二是发挥物尽其用的作用。
首先,保留用户的“被遗忘权”是用户数据使用的基础。
大数据时代到来,人们最担心的是自己将被暴露得一览无余,没有隐私可言。因此,个体信息是否公开,公开的程度,需要个体能够掌控,即用户自主决定其向外界公开的个人信息的广度和深度,也可随时自行或要求收集数据方,删除其掌握的任何关于用户个体的数据。用户要求收集者删除其样本信息时,须提供可以辨识其个体信息的依据(一般须为身份信息),以证明其要求删除的信息是属于自己的样本信息。
其次,数据收集者在收集样本数据时,须向用户群体公示其收集途径和方式,以及用户删除自己样本信息的途径和方法。只有这样,用户才能知晓其被收集者收集的数据是什么,以及自己的样本信息被经营者使用的状况是否安全,从而判断其是否愿意继续使用数据收集者的产品,并将自己的样本信息交给数据收集者经营。一旦用户选择使用某一数据收集者的产品,数据收集者将与用户共有其收集的用户样本数据。
第三,数据收集者在遵守法律对用户隐私保护前提下,无需用户授权,可自由地使用和经营其收集到的用户的样本数据,直至用户自行或要求其删除样本数据。
当前,各数据收集者之间进行不同程度的共享和授权数据的需求已是大数据的发展趋势。云与云的互联互通才能使数据样本变得足够庞大,使数据分析和挖掘的结果更有价值,使用户不同智能终端之间的连接变得可能,从而真正的实现大数据的物联网。
样本数据的共享和授权中涉及到大量个体信息,如果用户此类活动需要经过个体用户的授权,将会极大地阻碍商业效率,其数据和信息的收集是随时随地的,要求单个用户对单个的样本授权,也会影响用户的体验。因此最现实的方式是数据的收集者在经营和使用其收集的数据时,无需个体用户的单独授权。
最后,数据收集者通过样本数据所获取的收益,个体用户须有分配权。
个体用户对数据经营的收益分配权容易理解。数据的源头是个体,个体是样本数据的所有者,因此其理所应当得到经营数据的利益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22