京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下 用户数据不可一概而论
现如今,大数据已经成为这个时代的统治者,大数据时代,也是物联网的时代,随着云存储和云计算的发展,以智能手机、智能家电、可穿戴设备为代表的智能终端的普及,通过各种智能终端上传和收集的用户数据将越来越多,对用户数据的分析和挖掘及利用,将是大数据的商业价值所在,蕴藏和巨大价值的用户数据的性质及使用规则是我们值得思考的问题。
用户数据的“区分所有权”构想
提到用户数据,我们首先想到的是用户的“隐私权”。民法大家王利明教授在其主编的《人格权法新论》一书中提到:隐私权是自然人享有的对其个人的与公共利益无关的个人信息、私人活动和私有领域进行支配的一种人格权。可见隐私权是一项“个体”权益,强调权利的身份和人格的属性。
用户数据的商业价值核心并不是“个人”的人格权益,其必要条件是具备足够多的用户个体样本,其更强调“集合”的权利,单个用户数据的商业价值是有限的。而用户数据的核心价值在于通过对云端存储的海量的用户个人状况、行为、需求的样本分析和挖掘,一方面为上游硬件商提供产品的开发依据,另一方面对用户的消费、生活提供“量身打造”的服务,从而形成物联网的全产业链循环,实现更高效的管理社会资源并创造更多的价值。
可见,虽然用户数据来源于“个体”数据,但最终使社会获益的是用户的“集合”数据。因此,在界定用户数据的性质方面,笔者建议根据单个数据是否具有身份属性,将用户数据分为身份数据和样本数据,并对这两类数据加以区别保护。
用户的身份数据是指可以通过单一的个体数据,即能锁定特定用户的数据。如姓名、身份证号、各种账号信息、联系方式等。比如我们通过一个电话,就能联系到一个特定的用户。因此,此类信息具有较强的身份属性,须定义为“隐私权”的范围,其权利主体应为用户个人所有,其使用和经营,须经过用户的许可,否则将被判定为侵权。现行法律法规如《全国人民代表大会常务委员会关于加强网络信息保护的决定》、工信部出台的《电信和互联网用户个人信息保护规定》以及消费者权益保护法、《网络交易管理办法》中规定的个人信息,当属于用户的身份数据范畴。
样本数据是指通过个体数据汇聚成的用户个人状况、行为、需求的数据库以及通过分析和挖掘以上数据获得的相关数据。此类数据的所有权应为用户和数据收集方共有,但经营使用权建议应掌握在能够发挥其价值的数据收集者手中。将所有权和经营权区分开来,既能从法律上保证用户的个体权益,又符合经济学的原理。
样本数据的经营规则
用户身份数据的使用规则可以依据现有的法律法规执行。我们仅需要通过立法明确以上法律所适用的数据的范围,并在执行层面的政策上制定可操作的保护用户身份数据和隐私权的规章制度。
对于样本数据的使用和经营规则,现有法律并没有明确依据。根据上文的阐述,笔者已将其所有权拟定为用户和数据收集者共有,经营使用权则建议应掌握在能够发挥其价值的数据收集者手中。这样设计的目的在于,一是保留用户的“被遗忘权”;二是发挥物尽其用的作用。
首先,保留用户的“被遗忘权”是用户数据使用的基础。
大数据时代到来,人们最担心的是自己将被暴露得一览无余,没有隐私可言。因此,个体信息是否公开,公开的程度,需要个体能够掌控,即用户自主决定其向外界公开的个人信息的广度和深度,也可随时自行或要求收集数据方,删除其掌握的任何关于用户个体的数据。用户要求收集者删除其样本信息时,须提供可以辨识其个体信息的依据(一般须为身份信息),以证明其要求删除的信息是属于自己的样本信息。
其次,数据收集者在收集样本数据时,须向用户群体公示其收集途径和方式,以及用户删除自己样本信息的途径和方法。只有这样,用户才能知晓其被收集者收集的数据是什么,以及自己的样本信息被经营者使用的状况是否安全,从而判断其是否愿意继续使用数据收集者的产品,并将自己的样本信息交给数据收集者经营。一旦用户选择使用某一数据收集者的产品,数据收集者将与用户共有其收集的用户样本数据。
第三,数据收集者在遵守法律对用户隐私保护前提下,无需用户授权,可自由地使用和经营其收集到的用户的样本数据,直至用户自行或要求其删除样本数据。
当前,各数据收集者之间进行不同程度的共享和授权数据的需求已是大数据的发展趋势。云与云的互联互通才能使数据样本变得足够庞大,使数据分析和挖掘的结果更有价值,使用户不同智能终端之间的连接变得可能,从而真正的实现大数据的物联网。
样本数据的共享和授权中涉及到大量个体信息,如果用户此类活动需要经过个体用户的授权,将会极大地阻碍商业效率,其数据和信息的收集是随时随地的,要求单个用户对单个的样本授权,也会影响用户的体验。因此最现实的方式是数据的收集者在经营和使用其收集的数据时,无需个体用户的单独授权。
最后,数据收集者通过样本数据所获取的收益,个体用户须有分配权。
个体用户对数据经营的收益分配权容易理解。数据的源头是个体,个体是样本数据的所有者,因此其理所应当得到经营数据的利益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01