大数据关联营销
大数据营销,无疑是当前商业领域最热门的话题之一。 然而,大数据分析的基础是什么?当然是数据。随之而来的问题是:数据从哪里来?营销者自然而然会想到IT企业。诚然,进入Web2.0时代,网络就不仅仅是企业的舞台,每个人都可以通过一根网线在网络上留下自己的痕迹。因此,互联网企业拥有海量的数据,拥有大数据分析的天然基础。此外,使用芯片的各类设备制造企业也有大数据,它们通过植入机器中的小小芯片,记录用户的各种操作行为,为用户行为分析积累了大量的数据。以及大型连锁超市、金融服务中心等,它们掌握了具体的消费信息,同样积累了大量的数据。所以,在各类介绍大数据营销的书籍中,其援引的案例大多出于以上行业。那么,是不是这些行业之外的企业就与大数据营销隔绝开了呢?
社会化媒体数据
企业积累的数据通常可以分为以下几个类型:一是网络数据,通过互联网加载代码记录用户的浏览及点击行为,也就是海量的网络浏览点击痕迹数据;二是通过芯片记录的产品使用痕迹数据;三是消费行为痕迹数据,涉及少数几个特定的行业,并且其数据跨越了多类产品、多个行业,比如超市的每笔消费数据、淘宝的店主销售信息等。这三类数据主要集中于互联网行业、设备制造行业和零售行业。
此外,这三类数据的特点是“人们在无意识下自然产生的”,因为它难以与消费、使用的“人”建立联系而显得“生硬、不够鲜活”。因此,对这些海量数据进行分析,可以发现信息之间的关联,却难以解释为什么会形成这样的关联;可以发现消费特点,却难以在精准营销的执行层面进行转化,因为无法确切知道产生这些行为的是什么样的人。当然,还有一类数据可以在一定程度上弥补这样的缺陷,比如企业内部的销售、客服部门往往记录了更多的信息,对“人”进行补充描摹,但是这一类数据时效性比较弱,如果不对数据库及时更新致使信息错误率较高。
然而,社会化媒体时代出现了第五类数据,这就是自媒体爆发带来的海量数据。由于粉丝的出现,让企业得以区分社会化媒体中个人与企业的远近关系。粉丝的“自发”特性保证了信息的准确性,而“自媒体”的特性则为企业了解目标群体提供了一个近乎免费的通道,且不受特定的行业限制,这就为不同行业的企业进行大数据营销提供了数据基础。
数据彼此之间的关联
然而,当企业想要挖掘数据的商业价值时,面对庞杂的数据,企业却无从下手:数据量大,杂乱,不规则,一些数据缺失,一些数据模糊。比如,有的企业内部各个部门积累了几万条、十几万条甚至数百万条销售数据和客户信息,然而这些销售数据只涉及产品的销售时间、价格、销售店面信息,或者只是简单记录客户的姓名、性别、年龄、联系方式等,而客户购买产品方面的记录很少。换而言之,企业掌握的是一些彼此割裂的数据。由于中国大多数企业内部各自为战,不同的部门没有建立数据共享的通道,各个渠道的数据彼此之间难以关联。
《大数据时代》一书的作者维克托指出,大数据时代要放弃对因果关系的渴求,转而关注相关关系。美国沃尔玛将尿布与啤酒摆在一起,使尿布和啤酒的销量大幅增加。美国妇女通常在家照顾孩子,她们经常嘱咐丈夫下班回家时为孩子买尿布,而丈夫则顺手购买了啤酒。于是,尿片与啤酒形成了关联。因此,大数据挖掘的基础是数据之间的关联,单独的、片段化的数据再多,在大数据环境中也无法实现其价值。所以,中国企业要对原有的数据进行深度分析,首先要建立数据之间的联系,或以“人”的信息(姓名、手机号、身份证号、住址),或以产品信息(如产品的唯一编码),把各个渠道的数据打通,找到“数据的相关关系”。
数据关联可以是虚拟的
但由此带来一个技术性的问题,因为不是所有的数据都能建立真实的对应联系。某些行业,比如运动服饰,其消费是大众化的,企业没有建立完备的用户信息数据库。那么,在这种情况下,企业如何利用大数据获取增值信息呢?
事实上,企业可以利用社会化媒体进行模糊匹配的方式,更好地理解目标群体——即便现有的数据不能全面反映人群的特质,但可以通过社会化媒体实现“信息转化”,在社会化媒体中找到具有类似特质的“网络虚拟人”,并通过这一特质人群在各类社交媒体的全面信息,从而间接“实现”对目标人群的全面描摹。
事实上,社会化媒体为众多没有“先天数据条件”的企业提供了大数据营销的机会,大数据将跳出“痕迹数据关联分析”的处理模式,从“行为”的相关与预测发展到在Web3.0的360度分析与定位。而基于社会化媒体海量数据的“虚拟关联”模式,则为更多的数据关联提供了可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14